"정칙특이점(regular singular points)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
12번째 줄: | 6번째 줄: | ||
** regular singular point<br> | ** regular singular point<br> | ||
** irregular singular point<br> | ** irregular singular point<br> | ||
− | * | + | * 특이점 <math>z=a</math> 근방에서, 미분방정식의 해가 함수 <math>(z-a)^{\alpha}\log^{k} (z-a), \alpha\in\mathbb{C}, k=0,1,2,\cdots</math> 들의 해석함수를 계수로 갖는 선형결합으로 쓰여지는 경우, <math>z=a</math>를 정칙특이점이라 한다<br> |
− | * | + | * 각 <math>A_{i}(z)</math>가 <math>z=a</math>에서 기껏해야 order가 i 인 pole을 가지는 경우, z=a가 정칙특이점이 되는 것과 동치이다<br> <br> |
− | + | ||
− | + | ||
==이계 선형 미분방정식의 경우== | ==이계 선형 미분방정식의 경우== | ||
* [[이계 선형 미분방정식]]:<math>\frac{d^2w}{dz^2}+p(z)\frac{dw}{dz}+q(z)w=0</math><br> | * [[이계 선형 미분방정식]]:<math>\frac{d^2w}{dz^2}+p(z)\frac{dw}{dz}+q(z)w=0</math><br> | ||
− | * 위의 | + | * 위의 미분방정식이 <math>z=a</math>에서 정칙특이점을 갖는 것은 <math>p(z),q(z)</math> 가 <math>z=a</math> 근방에서 다음과 로랑급수를 가질 조건과 동치이다:<math>p(z)=\frac{a_{-1}}{z-a}+a_0+a_1(z-a)+a_2(z-a)^{2}+\cdots</math>:<math>q(z)=\frac{b_{-2}}{(z-a)^2}+\frac{b_{-1}}{z-a}+b_0+b_1(z-a)+b_2(z-a)^{2}+\cdots</math><br> |
− | + | ||
− | + | ||
==역사== | ==역사== | ||
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | * | + | * |
− | + | ||
− | + | ||
==메모== | ==메모== | ||
44번째 줄: | 38번째 줄: | ||
* [http://www.math.umn.edu/%7Egarrett/m/mfms/notes_c/reg_sing_pt.pdf http://www.math.umn.edu/~garrett/m/mfms/notes_c/reg_sing_pt.pdf]<br> | * [http://www.math.umn.edu/%7Egarrett/m/mfms/notes_c/reg_sing_pt.pdf http://www.math.umn.edu/~garrett/m/mfms/notes_c/reg_sing_pt.pdf]<br> | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
+ | * [[맴돌이군과 미분방정식]] | ||
+ | * [[초기하 미분방정식(Hypergeometric differential equations)]] | ||
− | + | ||
− | |||
− | |||
==수학용어번역== | ==수학용어번역== | ||
+ | * regular singularity , 정칙특이점 | ||
+ | * {{학술용어집|url=singularity}} | ||
+ | * {{학술용어집|url=regular}} | ||
+ | |||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/regular_singular_point | * http://en.wikipedia.org/wiki/regular_singular_point | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ||
[[분류:미분방정식]] | [[분류:미분방정식]] |
2013년 3월 22일 (금) 16:28 판
개요
- 선형미분방정식\[\frac{d^n w}{dz^n} + A_1(z)\frac{d^{n-1}w}{dz^{n-1}} + \cdots + A_{n-1}(z)\frac{dw}{dz} + A_n(z)w=0\]
- 선형미분방정식의 특이점을 다음과 같이 분류함
- 특이점이 아닌경우 ordinary point
- regular singular point
- irregular singular point
- 특이점이 아닌경우 ordinary point
- 특이점 \(z=a\) 근방에서, 미분방정식의 해가 함수 \((z-a)^{\alpha}\log^{k} (z-a), \alpha\in\mathbb{C}, k=0,1,2,\cdots\) 들의 해석함수를 계수로 갖는 선형결합으로 쓰여지는 경우, \(z=a\)를 정칙특이점이라 한다
- 각 \(A_{i}(z)\)가 \(z=a\)에서 기껏해야 order가 i 인 pole을 가지는 경우, z=a가 정칙특이점이 되는 것과 동치이다
이계 선형 미분방정식의 경우
- 이계 선형 미분방정식\[\frac{d^2w}{dz^2}+p(z)\frac{dw}{dz}+q(z)w=0\]
- 위의 미분방정식이 \(z=a\)에서 정칙특이점을 갖는 것은 \(p(z),q(z)\) 가 \(z=a\) 근방에서 다음과 로랑급수를 가질 조건과 동치이다\[p(z)=\frac{a_{-1}}{z-a}+a_0+a_1(z-a)+a_2(z-a)^{2}+\cdots\]\[q(z)=\frac{b_{-2}}{(z-a)^2}+\frac{b_{-1}}{z-a}+b_0+b_1(z-a)+b_2(z-a)^{2}+\cdots\]
역사
메모
관련된 항목들
수학용어번역
- regular singularity , 정칙특이점
- singularity - 대한수학회 수학용어집
- regular - 대한수학회 수학용어집