"격자의 세타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
32번째 줄: 32번째 줄:
 
==메모==
 
==메모==
 
* http://sbseminar.wordpress.com/2010/05/14/lattices-and-their-invariants/
 
* http://sbseminar.wordpress.com/2010/05/14/lattices-and-their-invariants/
 +
* [http://swc.math.arizona.edu/aws/2009/ Arizona Winter School 2009: Quadratic Forms]
 +
* http://math.mit.edu/~brubaker/Math784/thetafunctions.pdf
  
 
   
 
   

2013년 6월 16일 (일) 12:05 판

정의

  • 격자 \(L\) 에 대하여 세타함수를 다음과 같이 정의함\[\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, \quad q=e^{2\pi i \tau}\]
  • 여기서 \(x^2\) 은 벡터 \(x\)의 norm 을 가리킴.



자코비 세타함수의 경우

  • 격자가 정수집합 \(\mathbb Z\) 로 주어진 경우의 세타함수\[\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\]
  • 자코비 세타함수를 얻는다



세타함수의 모듈라 성질

(정리)

rank가 2n의 even unimodular 격자 \(L\)에 대하여 , 세타함수 \(\theta_L\) 은 weight n인 모듈라 형식이 된다.


(증명)

먼저 cusp 에서의 푸리에 급수 조건은 정의에 만족된다. ( \(\theta_L(i\infty)=1\) 도 알 수 있음.)

포아송의 덧셈 공식을 사용하자.


메모


관련된 항목들