"I^i 는 무엇일까?"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 13개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* <math>i^{i}</math>의 값은 하나로 결정되는 것이 아니라, 무한히 많다. 이는 [[복소로그함수]] 가 무한히 많은 값을 갖기 때문이다.
 +
* <math>i^{i}=\cdots,e^{-\frac{5\pi}{2}},e^{-\frac{\pi}{2}},e^{\frac{3\pi}{2}},\cdots</math>
 +
*  주치(principal value)는 <math>e^{-\frac{\pi}{2}}</math>로 주어진다.
 +
 +
 +
 +
 +
 +
==복소거듭제곱==
 +
 +
대학교 학부과정의 [[복소함수론]]에서는 복소수의 복소수 거듭제곱을 다음과 같이 정의한다.
 +
 +
두 복소수 <math>z,\alpha</math>에 대하여,<math>z^{\alpha}:=e^{\alpha \log z}</math>. 여기서 <math>\log z</math>는 [[복소로그함수]].
 +
 +
(이 정의에서는 복소지수함수 ([[오일러의 공식]] 참조)와 [[복소로그함수]] 가 사용되었다. )
 +
 +
 +
 +
복소로그함수에 대하여, 잠시 복습을 하자. 복소로그함수는 복소수 <math>z = re^{i\theta}</math> 에 대하여, 다음과 같이 정의된다
 +
 +
<math>\log z = \ln|z| + i\arg(z) = \ln(r) + i\left(\theta + 2 \pi k \right)</math>. 여기서 <math>k\in\mathbb{Z}</math>.
 +
 +
예를 들어보자면,
 +
 +
<math>\log 1 = \ln|1| + i\arg(1) = \ln(1) + i\left(0 + 2 \pi k \right) =\cdots, -6\pi i,-4\pi i,-2\pi i,0,2\pi i,4\pi i,6\pi i, \cdots</math>
 +
 +
 +
 +
 +
 +
 +
 +
==i^i의 계산==
 +
 +
<math>i^{i}=e^{i \log i}</math> 이므로 먼저 <math>\log i</math>를 계산하자.
 +
 +
<math>\log i = \ln|i| + i\arg(i) = i\left(\frac{\pi}{2} + 2 \pi k \right) =\cdots, ,\frac{\pi}{2}i-4\pi i,\frac{\pi}{2}i-2\pi i,\frac{\pi}{2}i,\frac{\pi}{2}i+2\pi i,\frac{\pi}{2}i+4\pi i,\cdots</math>
 +
 +
 +
 +
이제 정의와 위의 결과를 활용하여,
 +
 +
<math>i^{i}=e^{i \log i}=e^{i(\frac{\pi}{2}+2k\pi)i}=e^{-(\frac{\pi}{2}+2k\pi)}=e^{-\frac{\pi}{2}}e^{-2k\pi}</math> ,  <math>k\in\mathbb{Z}</math> 를 얻는다.
 +
 +
따라서,
 +
 +
<math>i^{i}=\cdots,e^{-\frac{5\pi}{2}},e^{-\frac{\pi}{2}},e^{\frac{3\pi}{2}},\cdots</math>
 +
 +
주치(principal value)는 k=0인 경우로, <math>i^{i}=e^{-\frac{\pi}{2}}</math>가 된다.
 +
 +
 +
 +
 +
 +
==역사==
 +
 +
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
* [[수학사 연표]]
 +
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
* [[복소로그함수]]
 +
* [[복소수]]
 +
[[분류:복소함수론]]

2013년 6월 24일 (월) 03:45 기준 최신판

개요

  • \(i^{i}\)의 값은 하나로 결정되는 것이 아니라, 무한히 많다. 이는 복소로그함수 가 무한히 많은 값을 갖기 때문이다.
  • \(i^{i}=\cdots,e^{-\frac{5\pi}{2}},e^{-\frac{\pi}{2}},e^{\frac{3\pi}{2}},\cdots\)
  • 주치(principal value)는 \(e^{-\frac{\pi}{2}}\)로 주어진다.



복소거듭제곱

대학교 학부과정의 복소함수론에서는 복소수의 복소수 거듭제곱을 다음과 같이 정의한다.

두 복소수 \(z,\alpha\)에 대하여,\(z^{\alpha}:=e^{\alpha \log z}\). 여기서 \(\log z\)는 복소로그함수.

(이 정의에서는 복소지수함수 (오일러의 공식 참조)와 복소로그함수 가 사용되었다. )


복소로그함수에 대하여, 잠시 복습을 하자. 복소로그함수는 복소수 \(z = re^{i\theta}\) 에 대하여, 다음과 같이 정의된다

\(\log z = \ln|z| + i\arg(z) = \ln(r) + i\left(\theta + 2 \pi k \right)\). 여기서 \(k\in\mathbb{Z}\).

예를 들어보자면,

\(\log 1 = \ln|1| + i\arg(1) = \ln(1) + i\left(0 + 2 \pi k \right) =\cdots, -6\pi i,-4\pi i,-2\pi i,0,2\pi i,4\pi i,6\pi i, \cdots\)




i^i의 계산

\(i^{i}=e^{i \log i}\) 이므로 먼저 \(\log i\)를 계산하자.

\(\log i = \ln|i| + i\arg(i) = i\left(\frac{\pi}{2} + 2 \pi k \right) =\cdots, ,\frac{\pi}{2}i-4\pi i,\frac{\pi}{2}i-2\pi i,\frac{\pi}{2}i,\frac{\pi}{2}i+2\pi i,\frac{\pi}{2}i+4\pi i,\cdots\)


이제 정의와 위의 결과를 활용하여,

\(i^{i}=e^{i \log i}=e^{i(\frac{\pi}{2}+2k\pi)i}=e^{-(\frac{\pi}{2}+2k\pi)}=e^{-\frac{\pi}{2}}e^{-2k\pi}\) , \(k\in\mathbb{Z}\) 를 얻는다.

따라서,

\(i^{i}=\cdots,e^{-\frac{5\pi}{2}},e^{-\frac{\pi}{2}},e^{\frac{3\pi}{2}},\cdots\)

주치(principal value)는 k=0인 경우로, \(i^{i}=e^{-\frac{\pi}{2}}\)가 된다.



역사



메모

관련된 항목들