"리만 세타 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
96번째 줄: 96번째 줄:
  
 
==예==
 
==예==
[[오일러의 오각수정리(pentagonal number theorem)]]
+
*[[오일러의 오각수정리(pentagonal number theorem)]]
 +
:<math>\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}</math>
 +
:<math>(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots</math>
 +
* 양변에 <math>q^{1/24}</math>를 곱하여, [[데데킨트 에타함수]]의 세타함수 표현을 얻는다
 +
:<math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}</math>
  
<math>\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}</math>
 
 
<math>(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots</math>
 
 
 
 
의 양변에 <math>q^{1/24}</math>를 곱하여, [[데데킨트 에타함수]]의 세타함수 표현을 얻는다
 
 
<math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}</math>
 
 
 
  
  
133번째 줄: 126번째 줄:
  
 
==관련된 항목들==
 
==관련된 항목들==
* [[리만 bilinear relation]]
+
* [[리만 곡면의 주기 행렬과 겹선형 관계 (bilinear relation)]]
 
* [[자코비 세타함수와 자코비 형식]]
 
* [[자코비 세타함수와 자코비 형식]]
 
* [[격자의 세타함수]]
 
* [[격자의 세타함수]]

2013년 8월 18일 (일) 10:38 판

개요

  • 아벨-야코비 정리에서 야코비 반전 (jacobi inversion) 문제를 해결하기 위해 도입
  • $\mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\}$
  • $\Omega\in \mathcal{H}_g$, $\mathbb{z}\in \mathbb{C}^g$
  • 리만세타함수 $\Theta: \mathcal{H}_g\times \mathbb{C}^g\to \mathbb{C}$ 를 다음과 같이 정의 ($\mathbf{\nu _1}, \mathbf{\nu _2}\in \mathbb{C}^g$ : characteristic)

$$ \Theta \left[ \begin{array}{c} \mathbf{\nu _1} \\ \mathbf{\nu _2} \\ \end{array} \right] (\Omega ,\mathbf{z}) =\sum_{{\mathbf{n}\in{\mathbb Z}^g}} e^{2 \pi i \left(\frac{1}{2}\left(\mathbf{\nu _1}+ \mathbf{n} \right)\Omega \left(\mathbf{\nu _1}+ \mathbf{n} \right)+ \left(\mathbf{\nu _1}+ \mathbf{n}\right)\left(\mathbf{\nu _2}+\mathbf{z}\right)\right)} $$

  • characteristic이 $\mathbf{\nu _1}=\mathbf{\nu _2}=0\in \mathbb{C}^g$인 경우

$$ \Theta \left[ \begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \end{array} \right] (\Omega ,\mathbf{z})=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}} $$


자코비 세타함수

$$ \begin{align*} \theta_{11}(z;\tau) &:= \Theta \left[ \begin{array}{c} 1/2 \\ 1/2 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} \left( n+ \frac{1}{2} \right)^2} \, \E^{2 \pi i \left(n+\frac{1}{2} \right) \, \left( z+\frac{1}{2} \right) } \\ \theta_{10}(z;\tau) &:= \Theta \left[ \begin{array}{c} 1/2 \\ 0 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} \left( n + \frac{1}{2} \right)^2} \, \E^{2 \pi i \left( n+\frac{1}{2} \right) z} \\ \theta_{00} (z;\tau) &:= \Theta \left[ \begin{array}{c} 0 \\ 0 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} n^2} \, \E^{2 \pi i n z} \\ \theta_{01} (z;\tau) &:= \Theta \left[ \begin{array}{c} 0 \\ 1/2 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} n^2} \, \E^{2 \pi i n \left( z+\frac{1}{2} \right) } \end{align*} $$


\[\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}\] \[(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\]

\[\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}\]


역사


메모



관련된 항목들


사전 형태의 자료


에세이