"데데킨트 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
수체 <math>K</math>에 대하여, [[데데킨트 제타함수]]는 다음과 같이 정의됨:<math>\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}</math><br>
+
수체 <math>K</math>에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨
*  예<br>
+
:<math>\zeta_{K}(s):=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}</math>
 +
*  예
 
** <math>K=\mathbb{Q}</math> 인 경우, [[리만제타함수]]를 얻음
 
** <math>K=\mathbb{Q}</math> 인 경우, [[리만제타함수]]를 얻음
 
* 전체 복소평면으로 [[해석적확장(analytic continuation)]] 되며, <math>s=1</math> 에서 simple pole을 가진다
 
* 전체 복소평면으로 [[해석적확장(analytic continuation)]] 되며, <math>s=1</math> 에서 simple pole을 가진다
* <math>s=1</math> 에서의 유수 ([[유수정리(residue theorem)]] ) 는 [[디리클레 유수 (class number) 공식]]으로 주어진다
 
:<math> \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}</math><br>
 
* <math>s=0</math> 에서 order 가 <math>r_1+r_2-1</math> 인 zero를 가지며 다음이 성립한다:<math> \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}</math><br>
 
  
  
12번째 줄: 10번째 줄:
 
* <math>K</math> 수체
 
* <math>K</math> 수체
 
* <math>C_K</math>  ideal class group
 
* <math>C_K</math>  ideal class group
 
+
  
 
==함수방정식==
 
==함수방정식==
  
* [[리만제타함수]] 의 함수방정식:<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)</math>:<math>\xi(s) = \xi(1 - s)</math><br>
+
* [[리만제타함수]] 의 함수방정식:<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)</math>:<math>\xi(s) = \xi(1 - s)</math>
* 리만제타함수는 <math>K=\mathbb{Q}</math> 인 경우, 즉  <math>\zeta(s)=\zeta_{\mathbb{Q}}(s)</math>
+
* 리만제타함수는 <math>K=\mathbb{Q}</math> 인 경우, 즉  <math>\zeta(s)=\zeta_{\mathbb{Q}}(s)</math>
*  데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립:<math>\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)</math>:<math>\xi_{K}(s) = \xi_{K}(1 - s)</math><br>
+
*  데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립:<math>\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)</math>:<math>\xi_{K}(s) = \xi_{K}(1 - s)</math>
  
 
 
  
 
+
==디리클레 유수 공식==
 +
* <math>s=1</math> 에서의 유수(residue)는 [[디리클레 유수 (class number) 공식]]으로 주어진다
 +
:<math> \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}</math>
 +
* <math>s=0</math> 에서 order 가 <math>r_1+r_2-1</math> 인 zero를 가지며 다음이 성립한다:<math> \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}</math>
 +
 
 +
 +
 
 +
  
 
==부분제타함수==
 
==부분제타함수==
  
*  각각의 ideal class <math>A\in C_K</math> 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의:<math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math><br>
+
*  각각의 ideal class <math>A\in C_K</math> 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의:<math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math>
*  제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨:<math>\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)</math><br>
+
*  제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨:<math>\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)</math>
*  더 일반적으로 준동형사상 <math>\chi \colon C_K \to \mathbb C^{*}</math>에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음:<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)</math><br>
+
*  더 일반적으로 준동형사상 <math>\chi \colon C_K \to \mathbb C^{*}</math>에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음:<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)</math>
  
 
+
  
 
+
  
 
==예==
 
==예==
40번째 줄: 44번째 줄:
 
* [[원분체의 데데킨트 제타함수]] 항목 참조
 
* [[원분체의 데데킨트 제타함수]] 항목 참조
  
 
+
  
 
+
  
 
== special values ==
 
== special values ==
 
===Klingen-Siegel 정리===
 
===Klingen-Siegel 정리===
* F : totally real  <math>[F: \mathbb{Q}]=n</math>이라 하자<br> 적당한 유리수 <math>r(m)\in \mathbb{Q}</math>에 대하여:<math>\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}</math>, <math>m>0</math><br>
+
* F : totally real 수체
* http://planetmath.org/SiegelKlingenTheorem.html<br>
+
* <math>[F: \mathbb{Q}]=n</math>
 +
* $m>0$일 때, 다음을 만족하는 적당한 유리수 <math>r(m)\in \mathbb{Q}</math>가 존재한다
 +
:<math>\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}</math>
 +
* http://planetmath.org/SiegelKlingenTheorem.html
  
  
 
===Zagier, Bloch, Suslin===
 
===Zagier, Bloch, Suslin===
 
* <math>[K : \mathbb{Q}] = r_1 + 2r_2</math>일 때,
 
* <math>[K : \mathbb{Q}] = r_1 + 2r_2</math>일 때,
:<math>\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}</math><br> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 Q-basis<br> D는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 함수이며, <math>a\sim b</math> 는 <math>a/b\in\mathbb{Q}</math> 를 의미함<br>
+
:<math>\zeta_{K}(2)\sim_{\mathbb{Q^{\times}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}</math> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 $\mathbb{Q}$-basis D는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)]] 함수이며, <math>a\sim_{\mathbb{Q^{\times}}} b</math> 는 <math>a/b\in\mathbb{Q}</math> 를 의미함
 
 
 
 
 
 
 
 
  
 
+
  
 
+
  
 
==역사==
 
==역사==
66번째 줄: 69번째 줄:
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
 
+
  
 
+
  
 
==메모==
 
==메모==
75번째 줄: 78번째 줄:
 
* http://mathoverflow.net/questions/87873/dedekind-zeta-function-behaviour-at-1
 
* http://mathoverflow.net/questions/87873/dedekind-zeta-function-behaviour-at-1
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
84번째 줄: 87번째 줄:
 
* [[L-함수의 값 구하기 입문]]
 
* [[L-함수의 값 구하기 입문]]
  
 
+
 
==계산 리소스==
 
==계산 리소스==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxcXFHOEFSMHc1bUk/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxcXFHOEFSMHc1bUk/edit
 
+
  
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
 
* http://en.wikipedia.org/wiki/Dedekind_zeta_function
 
* http://en.wikipedia.org/wiki/Dedekind_zeta_function
  
  
 
+
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
  
*  H. M. Stark, "Galois theory, algebraic number theory and zeta functions" ,in \ From number theory to physics", ed. M. Walschmidt, P. Moussa, J.-M. Luck, C. Itzykson Springer<br>
+
*  H. M. Stark, "Galois theory, algebraic number theory and zeta functions" ,in \ From number theory to physics", ed. M. Walschmidt, P. Moussa, J.-M. Luck, C. Itzykson Springer
*  H. M. Stark, The analytic theory of algebraic numbers http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183537391<br>
+
*  H. M. Stark, The analytic theory of algebraic numbers http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183537391
* [http://www.math.ualberta.ca/%7Emlalin/ Matilde N. Lalin], [http://www.math.ualberta.ca/%7Emlalin/dialogueshow.pdf Hyperbolic volumes and zeta values] An introduction<br>
+
* [http://www.math.ualberta.ca/%7Emlalin/ Matilde N. Lalin], [http://www.math.ualberta.ca/%7Emlalin/dialogueshow.pdf Hyperbolic volumes and zeta values] An introduction
  
 
+
  
 
+
  
 
==관련논문==
 
==관련논문==
  
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions]<br>
+
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions]
** Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
+
** Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
 
* D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields http://people.mpim-bonn.mpg.de/zagier/files/scanned/PolylogsDedekindZetaAndKTheory/fulltext.pdf
 
* D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields http://people.mpim-bonn.mpg.de/zagier/files/scanned/PolylogsDedekindZetaAndKTheory/fulltext.pdf
*  Commensurability classes and volumes of hyperbolic 3-manifolds<br>
+
*  Commensurability classes and volumes of hyperbolic 3-manifolds
 
** A. Borel, Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
 
** A. Borel, Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
  
 
+
  
 
==관련도서==
 
==관련도서==
  
 
+
  
 
+
  
 
+
  
 
==관련링크와 웹페이지==
 
==관련링크와 웹페이지==
 
* [http://www.math.mcgill.ca/goren/ZetaValues/zeta.html Tables of Values of Dedekind Zeta Functions]
 
* [http://www.math.mcgill.ca/goren/ZetaValues/zeta.html Tables of Values of Dedekind Zeta Functions]
 
[[분류:정수론]]
 
[[분류:정수론]]

2013년 12월 29일 (일) 18:16 판

개요

  • 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨

\[\zeta_{K}(s):=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}\]


기호

  • \(K\) 수체
  • \(C_K\) ideal class group


함수방정식

  • 리만제타함수 의 함수방정식\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)\]\[\xi(s) = \xi(1 - s)\]
  • 리만제타함수는 \(K=\mathbb{Q}\) 인 경우, 즉 \(\zeta(s)=\zeta_{\mathbb{Q}}(s)\)
  • 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립\[\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)\]\[\xi_{K}(s) = \xi_{K}(1 - s)\]


디리클레 유수 공식

\[ \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}\]

  • \(s=0\) 에서 order 가 \(r_1+r_2-1\) 인 zero를 가지며 다음이 성립한다\[ \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}\]



부분제타함수

  • 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의\[\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\]
  • 제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨\[\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\]
  • 더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음\[L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\]





special values

Klingen-Siegel 정리

  • F : totally real 수체
  • \([F: \mathbb{Q}]=n\)
  • $m>0$일 때, 다음을 만족하는 적당한 유리수 \(r(m)\in \mathbb{Q}\)가 존재한다

\[\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}\]


Zagier, Bloch, Suslin

  • \([K : \mathbb{Q}] = r_1 + 2r_2\)일 때,

\[\zeta_{K}(2)\sim_{\mathbb{Q^{\times}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\] 여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 $\mathbb{Q}$-basis D는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm) 함수이며, \(a\sim_{\mathbb{Q^{\times}}} b\) 는 \(a/b\in\mathbb{Q}\) 를 의미함



역사



메모



관련된 항목들


계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트



관련논문


관련도서

관련링크와 웹페이지