"전자기 텐서와 맥스웰 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
* 맥스웰 방정식을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다
+
* [[맥스웰 방정식]]을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다
  
 
 
 
 
20번째 줄: 20번째 줄:
 
==정의==
 
==정의==
  
* [[전자기 포텐셜과 맥스웰 방정식|포벡터 포텐셜]]<br>
+
* [[전자기 포텐셜과 맥스웰 방정식|포벡터 포텐셜]]
 
** <math>A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})</math>, <math>\alpha=0,1,2,3</math>
 
** <math>A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})</math>, <math>\alpha=0,1,2,3</math>
* 전자기 텐서의 성분을 <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math> 로 정의한다<br>
+
* 전자기 텐서의 성분을 <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math> 로 정의한다
** <br>
+
** 예
** <math>F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=-\frac{1}{c}\frac{\partial A_{x}}{\partial t} -\frac{1}{c}\frac{\partial \phi}{\partial x}=\frac{E_{x}}{c}</math><br>
+
** <math>F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=-\frac{1}{c}\frac{\partial A_{x}}{\partial t} -\frac{1}{c}\frac{\partial \phi}{\partial x}=\frac{E_{x}}{c}</math>
** <math>F_{12}=\partial_{1} A_{2} - \partial_{2} A_{1}=-\frac{\partial A_{y}}{\partial x}+\frac{\partial A_{x}}{\partial y}=-B_{z}</math><br>
+
** <math>F_{12}=\partial_{1} A_{2} - \partial_{2} A_{1}=-\frac{\partial A_{y}}{\partial x}+\frac{\partial A_{x}}{\partial y}=-B_{z}</math>
*  전자기 텐서의 성분을 다음과 같은 행렬로 표현하자 :<math>\left( \begin{array}{cccc}  F_{00} & F_{01} & F_{02} & F_{03} \\  F_{10} & F_{11} & F_{12} & F_{13} \\  F_{20} & F_{21} & F_{22} & F_{23} \\  F_{30} & F_{31} & F_{32} & F_{33} \end{array} \right)</math><br>
+
*  전자기 텐서의 성분을 다음과 같은 행렬로 표현하자 :<math>\left( \begin{array}{cccc}  F_{00} & F_{01} & F_{02} & F_{03} \\  F_{10} & F_{11} & F_{12} & F_{13} \\  F_{20} & F_{21} & F_{22} & F_{23} \\  F_{30} & F_{31} & F_{32} & F_{33} \end{array} \right)</math>
 +
*  전자기 텐서의 성분은 다음과 같다
 +
:<math>F_{\mu\nu} =\left( \begin{array}{cccc}  0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\  -\frac{E_x}{c} & 0 & -B_z & B_y \\  -\frac{E_y}{c} & B_z & 0 & -B_x \\  -\frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math>:<math>F^{\mu\nu} =\left( \begin{array}{cccc}  0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\  \frac{E_x}{c} & 0 & -B_z & B_y \\  \frac{E_y}{c} & B_z & 0 & -B_x \\  \frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math>
  
*  전자기 텐서의 성분은 다음과 같다:<math>F_{\mu\nu} =\left( \begin{array}{cccc}  0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\  -\frac{E_x}{c} & 0 & -B_z & B_y \\  -\frac{E_y}{c} & B_z & 0 & -B_x \\  -\frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math>:<math>F^{\mu\nu} =\left( \begin{array}{cccc}  0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\  \frac{E_x}{c} & 0 & -B_z & B_y \\  \frac{E_y}{c} & B_z & 0 & -B_x \\  \frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math><br>
 
  
 
 
 
 
 
  
 
==전자기 텐서와 전자기 포텐셜==
 
==전자기 텐서와 전자기 포텐셜==
 +
:<math>\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right)\\
 +
=\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)</math>
  
<math>\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right)</math>
 
  
<math>=\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)</math>
 
 
 
 
 
 
 
 
 
 
  
 
==맥스웰 방정식==
 
==맥스웰 방정식==
  
*  맥스웰 방정식은 다음 두 개의 방정식으로 표현된다:<math>\epsilon^{\alpha \beta \gamma \delta} \frac{\partial F_{\alpha \beta}}{\partial x^\gamma}=0</math>:<math>\partial_{\mu}F^{\mu\nu}=\mu_0 j^{\nu}</math><br>
+
*  맥스웰 방정식은 다음 두 개의 방정식으로 표현된다:<math>\epsilon^{\alpha \beta \gamma \delta} \frac{\partial F_{\alpha \beta}}{\partial x^\gamma}=0</math>:<math>\partial_{\mu}F^{\mu\nu}=\mu_0 j^{\nu}</math>
*  두번째 방정식을 각 성분에 대해 풀어쓰면 다음이 얻어진다:<math>\partial_{\mu}F^{\mu 0}=\mu_0 j^{0}</math> 는 전기장에 대한 가우스 법칙 <math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math>과 같다:<math>\partial_{\mu}F^{\mu 1}=\mu_0 j^{1}</math>, <math>\partial_{\mu}F^{\mu 2}=\mu_0 j^{2}</math>, <math>,\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}</math> 은 은 앙페르 법칙 <math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>의 각 성분과 같다<br>
+
*  두번째 방정식을 각 성분에 대해 풀어쓰면 다음이 얻어진다:<math>\partial_{\mu}F^{\mu 0}=\mu_0 j^{0}</math> 는 전기장에 대한 가우스 법칙 <math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math>과 같다:<math>\partial_{\mu}F^{\mu 1}=\mu_0 j^{1}</math>, <math>\partial_{\mu}F^{\mu 2}=\mu_0 j^{2}</math>, <math>,\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}</math> 은 은 앙페르 법칙 <math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>의 각 성분과 같다
  
 
 
 
 
59번째 줄: 51번째 줄:
 
==미분형식==
 
==미분형식==
  
* [[미분형식과 맥스웰 방정식|맥스웰 방정식과 미분형식]]
+
* [[미분형식과 맥스웰 방정식]]
 
 
 
 
 
 
 
 
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
 
 
 
 
 
 
 
 
 
 
==메모==
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
  
 
 
 
 
94번째 줄: 65번째 줄:
 
==사전 형태의 자료==
 
==사전 형태의 자료==
  
* [http://ko.wikipedia.org/wiki/%EC%A0%84%EC%9E%90%EA%B8%B0_%ED%85%90%EC%84%9C http://ko.wikipedia.org/wiki/전자기_텐서]
+
* http://ko.wikipedia.org/wiki/전자기_텐서
 
* http://en.wikipedia.org/wiki/Electromagnetic_tensor
 
* http://en.wikipedia.org/wiki/Electromagnetic_tensor
 
* http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
 
* http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
 
[[분류:수리물리학]]
 
[[분류:수리물리학]]

2014년 1월 30일 (목) 05:06 판

개요

  • 맥스웰 방정식을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다

 

 

기호

 

 

정의

  • 포벡터 포텐셜
    • \(A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})\), \(\alpha=0,1,2,3\)
  • 전자기 텐서의 성분을 \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\) 로 정의한다
    • \(F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=-\frac{1}{c}\frac{\partial A_{x}}{\partial t} -\frac{1}{c}\frac{\partial \phi}{\partial x}=\frac{E_{x}}{c}\)
    • \(F_{12}=\partial_{1} A_{2} - \partial_{2} A_{1}=-\frac{\partial A_{y}}{\partial x}+\frac{\partial A_{x}}{\partial y}=-B_{z}\)
  • 전자기 텐서의 성분을 다음과 같은 행렬로 표현하자 \[\left( \begin{array}{cccc} F_{00} & F_{01} & F_{02} & F_{03} \\ F_{10} & F_{11} & F_{12} & F_{13} \\ F_{20} & F_{21} & F_{22} & F_{23} \\ F_{30} & F_{31} & F_{32} & F_{33} \end{array} \right)\]
  • 전자기 텐서의 성분은 다음과 같다

\[F_{\mu\nu} =\left( \begin{array}{cccc} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ -\frac{E_x}{c} & 0 & -B_z & B_y \\ -\frac{E_y}{c} & B_z & 0 & -B_x \\ -\frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)\]\[F^{\mu\nu} =\left( \begin{array}{cccc} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)\]


전자기 텐서와 전자기 포텐셜

\[\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right)\\ =\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)\]


맥스웰 방정식

  • 맥스웰 방정식은 다음 두 개의 방정식으로 표현된다\[\epsilon^{\alpha \beta \gamma \delta} \frac{\partial F_{\alpha \beta}}{\partial x^\gamma}=0\]\[\partial_{\mu}F^{\mu\nu}=\mu_0 j^{\nu}\]
  • 두번째 방정식을 각 성분에 대해 풀어쓰면 다음이 얻어진다\[\partial_{\mu}F^{\mu 0}=\mu_0 j^{0}\] 는 전기장에 대한 가우스 법칙 \(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\)과 같다\[\partial_{\mu}F^{\mu 1}=\mu_0 j^{1}\], \(\partial_{\mu}F^{\mu 2}=\mu_0 j^{2}\), \(,\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}\) 은 은 앙페르 법칙 \(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)의 각 성분과 같다

 

 

 

미분형식

 

 

관련된 항목들

 

 

사전 형태의 자료