"Gauge theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
examples of renormalizable gauge theory==
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==meaning of the gague invariance | + | ==meaning of the gague invariance== |
* gauge = measure | * gauge = measure | ||
9번째 줄: | 9번째 줄: | ||
− | ==gauge field | + | ==gauge field== |
* a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one<br> | * a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one<br> | ||
19번째 줄: | 19번째 줄: | ||
− | ==Gauge invariance of the QED Lagrangian | + | ==Gauge invariance of the QED Lagrangian== |
<math>\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu</math> | <math>\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu</math> | ||
33번째 줄: | 33번째 줄: | ||
− | ==gauge field tensor | + | ==gauge field tensor== |
* electromagnetic field tensor <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math><br> | * electromagnetic field tensor <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math><br> | ||
42번째 줄: | 42번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">examples of renormalizable gauge theory | + | <h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">examples of renormalizable gauge theory== |
* [[QED]]<br> | * [[QED]]<br> | ||
52번째 줄: | 52번째 줄: | ||
− | ==Abelian gauge theory | + | ==Abelian gauge theory== |
* abelian gauge theory has a duality | * abelian gauge theory has a duality | ||
60번째 줄: | 60번째 줄: | ||
− | ==Non-Abelian gauge theory | + | ==Non-Abelian gauge theory== |
* [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]] | * [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]] | ||
68번째 줄: | 68번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">differential geometry formulation | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">differential geometry formulation== |
* manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection<br> | * manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection<br> | ||
79번째 줄: | 79번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">Principal G-bundle | + | <h5 style="margin: 0px; line-height: 2em;">Principal G-bundle== |
* [[principal bundles]]<br> | * [[principal bundles]]<br> | ||
90번째 줄: | 90번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">3d Chern-Simons theory | + | <h5 style="margin: 0px; line-height: 2em;">3d Chern-Simons theory== |
* 3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br> | * 3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br> | ||
102번째 줄: | 102번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">메모 | + | <h5 style="margin: 0px; line-height: 2em;">메모== |
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br> | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br> | ||
111번째 줄: | 111번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items== |
* [[differential geometry and topology|differential geometry]]<br> | * [[differential geometry and topology|differential geometry]]<br> | ||
119번째 줄: | 119번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">encyclopedia | + | <h5 style="margin: 0px; line-height: 2em;">encyclopedia== |
* http://en.wikipedia.org/wiki/principal_bundle | * http://en.wikipedia.org/wiki/principal_bundle | ||
128번째 줄: | 128번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books== |
* The Geometry of Physics: An Introduction | * The Geometry of Physics: An Introduction | ||
138번째 줄: | 138번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">expositions | + | <h5 style="margin: 0px; line-height: 2em;">expositions== |
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003<br> | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003<br> | ||
150번째 줄: | 150번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles== |
* [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ] | * [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ] |
2012년 10월 28일 (일) 14:27 판
meaning of the gague invariance
- gauge = measure
- gauge invariance = measurement에 있어서의 invariance를 말함
- Lagrangian should be gauge invariant.
gauge field
- a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
- one example is the electromagnetic field
Gauge invariance of the QED Lagrangian
\(\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu\)
Now we have a Lagrangian with interaction terms.
- local phase transformation of fields
\(\psi(x) \to e^{i\alpha(x)}\psi(x)\) - gauge transformation of electromagnetic field
\(A_{\mu}(x) \to A_{\mu}(x)+\frac{1}{e}\partial_{\mu}\alpha(x)}\) - Look at the QED page
gauge field tensor
- electromagnetic field tensor \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
- general gauge fields tensor \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)
examples of renormalizable gauge theory==
- QED
- QCD
- renormalization
Abelian gauge theory
- abelian gauge theory has a duality
Non-Abelian gauge theory
differential geometry formulation==
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
- connection \(A\) = special kind of 1-form
- \(dA\) = 2-form which measures the electromagnetic charge
- Then the Chern class measures the magnetic charge.
Principal G-bundle==
3d Chern-Simons theory==
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
- analogy with class field theory
- replace \(\Sigma\) by \(spec O_K\)
- then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
- Now from An's article,
메모==
related items==
encyclopedia==
books==
- The Geometry of Physics: An Introduction
- An elementary primer for gauge theory
- 찾아볼 수학책
expositions==
- On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
articles==
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
- connection \(A\) = special kind of 1-form
- \(dA\) = 2-form which measures the electromagnetic charge
- Then the Chern class measures the magnetic charge.
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
- analogy with class field theory
- replace \(\Sigma\) by \(spec O_K\)
- then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
- Now from An's article,
- The Geometry of Physics: An Introduction
- An elementary primer for gauge theory
- 찾아볼 수학책
- On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]