"Classical field theory and classical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
5번째 줄: 5번째 줄:
 
* require the invariance of action integral over arbitrary region
 
* require the invariance of action integral over arbitrary region
 
* this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
 
* this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
*  three important conserved quantity<br>
+
*  three important conserved quantity
 
** energy
 
** energy
 
** momentum
 
** momentum
 
** angular momentum
 
** angular momentum
  
 
+
  
 
+
  
 
==notation==
 
==notation==
  
*  dynamical variables <math>q_{k}, \dot{q}_k</math> for <math>k=1,\cdots, N</math><br>
+
*  dynamical variables <math>q_{k}, \dot{q}_k</math> for <math>k=1,\cdots, N</math>
* <math>T</math> kinetic energy<br>
+
* <math>T</math> kinetic energy
* <math>V</math> potential energy<br>
+
* <math>V</math> potential energy
*  We have Lagrangian <math>L=T-V</math><br>
+
*  We have Lagrangian <math>L=T-V</math>
*  Define the Hamiltonian<br>
+
*  Define the Hamiltonian
* <math>H =\sum_{k=1}^{N} p_{k}\dot{q}_{k}-L</math><br>
+
* <math>H =\sum_{k=1}^{N} p_{k}\dot{q}_{k}-L</math>
* <math>p\dot q</math> is twice of kinetic energy<br>
+
* <math>p\dot q</math> is twice of kinetic energy
*  Thus the Hamiltonian represents <math>H=T+V</math> the total energy of the system<br>
+
*  Thus the Hamiltonian represents <math>H=T+V</math> the total energy of the system
  
 
+
  
 
+
  
 
==Lagrangian formalism==
 
==Lagrangian formalism==
33번째 줄: 33번째 줄:
 
* [[Lagrangian formalism]]
 
* [[Lagrangian formalism]]
  
 
+
  
 
+
  
 
==canonically conjugate momentum==
 
==canonically conjugate momentum==
  
*  canonically conjugate momenta<br><math>p_{k}=\frac{\partial L}{\partial \dot{q}_k}</math><br>
+
*  canonically conjugate momenta<math>p_{k}=\frac{\partial L}{\partial \dot{q}_k}</math>
 
* instead of <math>q_{k}, \dot{q}_k</math>, one can use <math>q_{k}, p_{k}</math> as dynamical variables
 
* instead of <math>q_{k}, \dot{q}_k</math>, one can use <math>q_{k}, p_{k}</math> as dynamical variables
  
 
+
  
 
+
  
 
+
  
 
==Hamiltonian mechanics==
 
==Hamiltonian mechanics==
  
*  conjugate variables are on the equal footing<br>
+
*  conjugate variables are on the equal footing
 
* [http://statphys.springnote.com/pages/5695329 고전역학에서의 가적분성] 항목 참조
 
* [http://statphys.springnote.com/pages/5695329 고전역학에서의 가적분성] 항목 참조
  
 
+
  
 
+
  
 
+
  
 
==Poisson bracket==
 
==Poisson bracket==
  
For <math>f(p_i,q_i,t), g(p_i,q_i,t)</math> , we define the Poisson bracket
+
For <math>f(p_i,q_i,t), g(p_i,q_i,t)</math> , we define the Poisson bracket
  
 
<math>\{f,g\} = \sum_{i=1}^{N} \left[  \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]</math>
 
<math>\{f,g\} = \sum_{i=1}^{N} \left[  \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]</math>
69번째 줄: 69번째 줄:
 
<math>\{f,g\} = \frac{1}{i}[u,v]</math>
 
<math>\{f,g\} = \frac{1}{i}[u,v]</math>
  
 
+
  
 
+
  
 
==phase space==
 
==phase space==
  
 
+
  
 
+
   
 
 
==== 하위페이지 ====
 
 
 
* [[classical field theory and classical mechanics|classical field theory and classical mechanics]]<br>
 
** [[Lagrangian formalism]]<br>
 
** [[Legendre transformation]]<br>
 
** [[Nonlinear Sigma model]]<br>
 
** [[symmetry and conserved quantitiy : Noether's theorem]]<br>
 
** [[symplectic geometry]]<br>
 
*** [[action-angle variables]]<br>
 
*** [[canonical transformation]]<br>
 
*** [[Hamiltonian flows]]<br>
 
*** [[moment map]]<br>
 
*** [[quantization of Poisson algebras]]<br>
 
*** [[symplectic leaves]]<br>
 
*** [[two-body problem]]<br>
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==links and webpages==
 
==links and webpages==
  
* [http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf ][http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf]
+
* http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf
* [http://www.math.ucr.edu/home/baez/classical/ Classical Mechanics]<br>
+
* [http://www.math.ucr.edu/home/baez/classical/ Classical Mechanics]
 
** John Baez
 
** John Baez
  
 
+
  
 
==question and answers(Math Overflow)==
 
==question and answers(Math Overflow)==
 +
* http://mathoverflow.net/questions/30886/applications-of-classical-field-theory
  
* http://mathoverflow.net/search?q=
+
* http://mathoverflow.net/search?q=
 
* http://goo.gl/rUJBV
 
  
 
+
  
 
+
 
 
 
 
  
 
==history==
 
==history==
125번째 줄: 100번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
 
==related items==
 
==related items==
136번째 줄: 111번째 줄:
 
* [[5 integrable systems and solvable models|integrable Hamiltonian systems and solvable models]]
 
* [[5 integrable systems and solvable models|integrable Hamiltonian systems and solvable models]]
  
 
+
  
 
+
  
 
==encyclopedia==
 
==encyclopedia==
154번째 줄: 129번째 줄:
 
* [http://en.wikipedia.org/wiki/Action_%28physics%29 http://en.wikipedia.org/wiki/Action_(physics)]
 
* [http://en.wikipedia.org/wiki/Action_%28physics%29 http://en.wikipedia.org/wiki/Action_(physics)]
  
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/
 
 
 
 
 
 
 
 
 
 
 
  
 
==books==
 
==books==
 +
*  Classical mechanics [[2610572/attachments/1142452|Classical_Mechanics.djvu]]V.I. Arnold
 +
* [[Emmy Noether’s Wonderful Theorem]]
 +
*  [http://library.nu/docs/1U9OCRM7QY/Electrodynamics%20and%20Classical%20Theory%20of%20Fields%20and%20Particles Electrodynamics and Classical Theory of Fields and Particles]
  
*  <br>
+
   
*  Classical mechanics [[2610572/attachments/1142452|Classical_Mechanics.djvu]]V.I. Arnold<br>
 
* [[Emmy Noether’s Wonderful Theorem]]<br>
 
*   <br>[http://library.nu/docs/1U9OCRM7QY/Electrodynamics%20and%20Classical%20Theory%20of%20Fields%20and%20Particles Electrodynamics and Classical Theory of Fields and Particles]<br>
 
  
 
+
 
 
 
 
  
 
==expositions==
 
==expositions==
 
 
* Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences
 
* Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:physics]]
 
[[분류:physics]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:classical mechanics]]
 
[[분류:classical mechanics]]

2013년 4월 21일 (일) 05:44 판

introduction

  • can be formulated using classical fields and Lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
  • three important conserved quantity
    • energy
    • momentum
    • angular momentum



notation

  • dynamical variables \(q_{k}, \dot{q}_k\) for \(k=1,\cdots, N\)
  • \(T\) kinetic energy
  • \(V\) potential energy
  • We have Lagrangian \(L=T-V\)
  • Define the Hamiltonian
  • \(H =\sum_{k=1}^{N} p_{k}\dot{q}_{k}-L\)
  • \(p\dot q\) is twice of kinetic energy
  • Thus the Hamiltonian represents \(H=T+V\) the total energy of the system



Lagrangian formalism



canonically conjugate momentum

  • canonically conjugate momenta\(p_{k}=\frac{\partial L}{\partial \dot{q}_k}\)
  • instead of \(q_{k}, \dot{q}_k\), one can use \(q_{k}, p_{k}\) as dynamical variables




Hamiltonian mechanics




Poisson bracket

For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket

\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)

In quantization we have correspondence

\(\{f,g\} = \frac{1}{i}[u,v]\)



phase space

links and webpages


question and answers(Math Overflow)




history



related items



encyclopedia


books



expositions

  • Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences