Classical field theory and classical mechanics
둘러보기로 가기
검색하러 가기
introduction
- can be formulated using classical fields and Lagrangian density
- change the coordinates and fields accordingly
- require the invariance of action integral over arbitrary region
- this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
- three important conserved quantity
- energy
- momentum
- angular momentum
notation
- dynamical variables \(q_{k}, \dot{q}_k\) for \(k=1,\cdots, N\)
- \(T\) kinetic energy
- \(V\) potential energy
- We have Lagrangian \(L=T-V\)
- Define the Hamiltonian
- \(H =\sum_{k=1}^{N} p_{k}\dot{q}_{k}-L\)
- \(p\dot q\) is twice of kinetic energy
- Thus the Hamiltonian represents \(H=T+V\) the total energy of the system
Lagrangian formalism
canonically conjugate momentum
- canonically conjugate momenta\(p_{k}=\frac{\partial L}{\partial \dot{q}_k}\)
- instead of \(q_{k}, \dot{q}_k\), one can use \(q_{k}, p_{k}\) as dynamical variables
Hamiltonian mechanics
- conjugate variables are on the equal footing
- 고전역학에서의 가적분성 항목 참조
Poisson bracket
For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket
\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)
In quantization we have correspondence
\(\{f,g\} = \frac{1}{i}[u,v]\)
phase space
links and webpages
question and answers(Math Overflow)
history
computational resource
encyclopedia
- http://en.wikipedia.org/wiki/Classical_field_theory
- http://en.wikipedia.org/wiki/Continuity_equation
- http://en.wikipedia.org/wiki/current_density
- http://en.wikipedia.org/wiki/Noether's_theorem
- http://ko.wikipedia.org /wiki/작용
- http://en.wikipedia.org/wiki/Canonical_coordinates
- http://en.wikipedia.org/wiki/Lagrangian_mechanics
- http://en.wikipedia.org/wiki/Lagrangian
- http://en.wikipedia.org/wiki/poisson_bracket
- http://en.wikipedia.org/wiki/Action_(physics)
books
- Classical mechanics, V.I. Arnold
- Emmy Noether’s Wonderful Theorem
- Electrodynamics and Classical Theory of Fields and Particles
expositions
- McLachlan, Robert I., Klas Modin, and Olivier Verdier. “Symmetry Reduction for Central Force Problems.” arXiv:1512.04631 [math-Ph], December 14, 2015. http://arxiv.org/abs/1512.04631.
- Nolte, David D. ‘The Tangled Tale of Phase Space’. Physics Today, 2010. http://works.bepress.com/ddnolte/2.
- De León, M., M. Salgado, and S. Vilariño. “Methods of Differential Geometry in Classical Field Theories: K-Symplectic and K-Cosymplectic Approaches.” arXiv:1409.5604 [math-Ph], September 19, 2014. http://arxiv.org/abs/1409.5604.
- Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences
- Caudrey, P. J., J. C. Eilbeck, and J. D. Gibbon. 1975. “The Sine-Gordon Equation as a Model Classical Field Theory.” Il Nuovo Cimento B Series 11 25 (2) (February 1): 497–512. doi:10.1007/BF02724733.
- Müller, Dr Volkhard F. 1969. “Introduction to the Lagrangian Method.” In Current Algebra and Phenomenological Lagrange Functions, 42–52. Springer Tracts in Modern Physics 118 50. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0045916.
articles
- Sebastián Ferraro, Manuel de León, Juan Carlos Marrero, David Martín de Diego, Miguel Vaquero, On the Geometry of the Hamilton-Jacobi Equation and Generating Functions, arXiv:1606.00847 [math-ph], June 02 2016, http://arxiv.org/abs/1606.00847
- Solanpää, Janne, Perttu Luukko, and Esa Räsänen. ‘Bill2d - a Software Package for Classical Two-Dimensional Hamiltonian Systems’. arXiv:1506.06917 [physics], 23 June 2015. http://arxiv.org/abs/1506.06917.
- Zelikin, Mikhail. “The Fractal Theory of the Saturn Ring.” arXiv:1506.02908 [math-Ph], June 9, 2015. http://arxiv.org/abs/1506.02908.
- Gay-Balmaz, François, and Tudor S. Ratiu. 2014. “A New Lagrangian Dynamic Reduction in Field Theory.” arXiv:1407.0263 [math-Ph], July. http://arxiv.org/abs/1407.0263.
- Sławianowski, J. J., Jr Schroeck, and A. Martens. “Why Must We Work in the Phase Space?” arXiv:1404.2588 [math-Ph], April 4, 2014. http://arxiv.org/abs/1404.2588.
메타데이터
위키데이터
- ID : Q2603912
Spacy 패턴 목록
- [{'LOWER': 'classical'}, {'LOWER': 'field'}, {'LEMMA': 'theory'}]