"퇴플리츠 연산자"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
16번째 줄: 16번째 줄:
 
  <references />
 
  <references />
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q7812935 Q7812935]
 
* ID :  [https://www.wikidata.org/wiki/Q7812935 Q7812935]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'toeplitz'}, {'LEMMA': 'operator'}]

2021년 2월 16일 (화) 23:48 기준 최신판

노트

위키데이터

말뭉치

  1. It is a natural ask of when Toeplitz operator becomes normal.[1]
  2. (i) Let be an analytic Toeplitz operator in ; that is, .[2]
  3. Let us suppose, for now, is a coanalytic Toeplitz operator in and .[2]
  4. Toeplitz operator in , cannot be of finite rank (see Remark 7).[2]
  5. Suppose now that is known to be a Toeplitz operator in , for some .[2]
  6. ( T n ) , the Toeplitz operator T ϕ is defined as the compression of M ϕ to H 2 ( D n ) .[3]
  7. A necessary and sufficient condition that an operator on H 2 ( D n ) be a Toeplitz operator is that it can be represented as a Toeplitz matrix of level n .[3]
  8. If A is a Toeplitz operator on H 2 ( D n ) , then, by Theorem 3.4, A can be represented as a Toeplitz matrix of level- n .[3]
  9. it can be shown that A is a Toeplitz operator on H 2 ( D n ) .[3]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'toeplitz'}, {'LEMMA': 'operator'}]