"Gauge theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 10개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * {{수학노트|url=게이지_이론}} | ||
+ | |||
+ | |||
==meaning of the gague invariance== | ==meaning of the gague invariance== | ||
5번째 줄: | 9번째 줄: | ||
* Lagrangian should be gauge invariant. | * Lagrangian should be gauge invariant. | ||
− | + | ||
− | |||
− | |||
− | ==gauge | + | ===gauge symmetry and measurement=== |
− | * | + | * symmetry implies the existence of something unmeasurable. |
+ | * phase is one example | ||
− | + | ||
− | + | ==gauge field== | |
− | |||
− | |||
− | + | * a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one | |
− | + | * one example is the electromagnetic field | |
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==gauge field tensor== | ==gauge field tensor== | ||
− | * electromagnetic field | + | * electromagnetic field tensor <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math> |
− | * general gauge fields | + | * general gauge fields tensor <math>G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}</math> |
− | + | ||
− | + | ||
− | ==examples | + | ==examples of renormalizable gauge theory== |
− | * [[QED]] | + | * [[QED]] |
− | * QCD | + | * QCD |
* [[renormalization]] | * [[renormalization]] | ||
− | + | ||
− | + | ||
==Abelian gauge theory== | ==Abelian gauge theory== | ||
55번째 줄: | 49번째 줄: | ||
* abelian gauge theory has a duality | * abelian gauge theory has a duality | ||
− | + | ||
− | + | ||
==Non-Abelian gauge theory== | ==Non-Abelian gauge theory== | ||
63번째 줄: | 57번째 줄: | ||
* [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]] | * [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]] | ||
− | + | ||
− | + | ||
==differential geometry formulation== | ==differential geometry formulation== | ||
− | * | + | * manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection |
− | * connection <math>A</math> | + | * connection <math>A</math> = special kind of 1-form |
− | * <math>dA</math> | + | * <math>dA</math> = 2-form which measures the electromagnetic charge |
− | * Then the Chern class measures the magnetic charge. | + | * Then the Chern class measures the magnetic charge. |
− | + | ||
− | + | ||
==Principal G-bundle== | ==Principal G-bundle== | ||
− | * [[principal bundles]] | + | * [[principal bundles]] |
− | * [[topology and vector bundles]] | + | * [[topology and vector bundles]] |
− | + | ||
− | + | ||
− | + | ||
==3d Chern-Simons theory== | ==3d Chern-Simons theory== | ||
− | * 3d Chern-Simons theory | + | * 3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>. |
− | * analogy with class field theory | + | * analogy with class field theory |
− | * | + | * replace <math>\Sigma</math> by <math>spec O_K</math> |
− | * then flat connection | + | * then flat connection on <math>spec O_K</math> is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1) |
− | * Now from An's article, | + | * Now from An's article, |
− | + | ||
− | + | ||
==메모== | ==메모== | ||
− | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf] | + | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf] |
− | * | + | * |
− | + | ||
− | + | ||
==related items== | ==related items== | ||
− | * [[differential geometry and topology|differential geometry]] | + | * [[differential geometry and topology|differential geometry]] |
− | + | ||
− | + | ||
==encyclopedia== | ==encyclopedia== | ||
123번째 줄: | 117번째 줄: | ||
* [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)] | * [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)] | ||
− | + | ||
− | + | ||
==books== | ==books== | ||
* The Geometry of Physics: An Introduction | * The Geometry of Physics: An Introduction | ||
− | * An | + | * An elementary primer for gauge theory |
* [[2009년 books and articles|찾아볼 수학책]] | * [[2009년 books and articles|찾아볼 수학책]] | ||
− | + | ||
− | + | ||
==expositions== | ==expositions== | ||
+ | * Wilczek, Frank. “Unification of Force and Substance.” arXiv:1512.02094 [hep-Ph, Physics:hep-Th, Physics:physics], December 7, 2015. http://arxiv.org/abs/1512.02094. | ||
+ | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003 | ||
− | + | * [http://www.thetangentbundle.net/papers/gauge.pdf Connections, Gauges and Field Theories] | |
− | |||
− | * [http://www.thetangentbundle.net/papers/gauge.pdf Connections, Gauges and Field Theories] | ||
− | * [http://www.math.cornell.edu/%7Egoldberg/Notes/AboutConnections.pdf WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR?] TIMOTHY E. GOLDBERG | + | * [http://www.math.cornell.edu/%7Egoldberg/Notes/AboutConnections.pdf WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR?] TIMOTHY E. GOLDBERG |
− | |||
− | |||
− | |||
− | |||
==articles== | ==articles== | ||
+ | * Slavnov, A. A. “60 Years of Gauge Fields.” arXiv:1511.05713 [hep-Th], November 18, 2015. http://arxiv.org/abs/1511.05713. | ||
+ | * Weatherall, James Owen. ‘Fiber Bundles, Yang-Mills Theory, and General Relativity’. arXiv:1411.3281 [gr-Qc, Physics:hep-Th, Physics:math-Ph, Physics:physics], 12 November 2014. http://arxiv.org/abs/1411.3281. | ||
+ | * [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:gauge theory]] | ||
+ | [[분류:migrate]] | ||
− | + | ==메타데이터== | |
− | [[ | + | ===위키데이터=== |
+ | * ID : [https://www.wikidata.org/wiki/Q214850 Q214850] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}] | ||
+ | * [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}] |
2021년 2월 17일 (수) 01:24 기준 최신판
introduction
meaning of the gague invariance
- gauge = measure
- gauge invariance = measurement에 있어서의 invariance를 말함
- Lagrangian should be gauge invariant.
gauge symmetry and measurement
- symmetry implies the existence of something unmeasurable.
- phase is one example
gauge field
- a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
- one example is the electromagnetic field
gauge field tensor
- electromagnetic field tensor \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
- general gauge fields tensor \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)
examples of renormalizable gauge theory
- QED
- QCD
- renormalization
Abelian gauge theory
- abelian gauge theory has a duality
Non-Abelian gauge theory
differential geometry formulation
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
- connection \(A\) = special kind of 1-form
- \(dA\) = 2-form which measures the electromagnetic charge
- Then the Chern class measures the magnetic charge.
Principal G-bundle
3d Chern-Simons theory
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
- analogy with class field theory
- replace \(\Sigma\) by \(spec O_K\)
- then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
- Now from An's article,
메모
encyclopedia
- http://en.wikipedia.org/wiki/principal_bundle
- http://en.wikipedia.org/wiki/Connection_(vector_bundle)
books
- The Geometry of Physics: An Introduction
- An elementary primer for gauge theory
- 찾아볼 수학책
expositions
- Wilczek, Frank. “Unification of Force and Substance.” arXiv:1512.02094 [hep-Ph, Physics:hep-Th, Physics:physics], December 7, 2015. http://arxiv.org/abs/1512.02094.
- On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
articles
- Slavnov, A. A. “60 Years of Gauge Fields.” arXiv:1511.05713 [hep-Th], November 18, 2015. http://arxiv.org/abs/1511.05713.
- Weatherall, James Owen. ‘Fiber Bundles, Yang-Mills Theory, and General Relativity’. arXiv:1411.3281 [gr-Qc, Physics:hep-Th, Physics:math-Ph, Physics:physics], 12 November 2014. http://arxiv.org/abs/1411.3281.
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]
메타데이터
위키데이터
- ID : Q214850
Spacy 패턴 목록
- [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}]