"Gauge theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 3개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * {{수학노트|url=게이지_이론}} | ||
+ | |||
+ | ==meaning of the gague invariance== | ||
+ | |||
+ | * gauge = measure | ||
+ | * gauge invariance = measurement에 있어서의 invariance를 말함 | ||
+ | * Lagrangian should be gauge invariant. | ||
+ | |||
+ | |||
+ | |||
+ | ===gauge symmetry and measurement=== | ||
+ | |||
+ | * symmetry implies the existence of something unmeasurable. | ||
+ | * phase is one example | ||
+ | |||
+ | |||
+ | |||
+ | ==gauge field== | ||
+ | |||
+ | * a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one | ||
+ | |||
+ | * one example is the electromagnetic field | ||
+ | |||
+ | |||
+ | |||
+ | ==gauge field tensor== | ||
+ | |||
+ | * electromagnetic field tensor <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math> | ||
+ | * general gauge fields tensor <math>G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==examples of renormalizable gauge theory== | ||
+ | |||
+ | * [[QED]] | ||
+ | * QCD | ||
+ | * [[renormalization]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Abelian gauge theory== | ||
+ | |||
+ | * abelian gauge theory has a duality | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Non-Abelian gauge theory== | ||
+ | |||
+ | * [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==differential geometry formulation== | ||
+ | |||
+ | * manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection | ||
+ | * connection <math>A</math> = special kind of 1-form | ||
+ | * <math>dA</math> = 2-form which measures the electromagnetic charge | ||
+ | * Then the Chern class measures the magnetic charge. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Principal G-bundle== | ||
+ | |||
+ | * [[principal bundles]] | ||
+ | * [[topology and vector bundles]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==3d Chern-Simons theory== | ||
+ | |||
+ | * 3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>. | ||
+ | * analogy with class field theory | ||
+ | * replace <math>\Sigma</math> by <math>spec O_K</math> | ||
+ | * then flat connection on <math>spec O_K</math> is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1) | ||
+ | * Now from An's article, | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==메모== | ||
+ | |||
+ | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf] | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==related items== | ||
+ | |||
+ | * [[differential geometry and topology|differential geometry]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==encyclopedia== | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/principal_bundle | ||
+ | * [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==books== | ||
+ | |||
+ | * The Geometry of Physics: An Introduction | ||
+ | * An elementary primer for gauge theory | ||
+ | * [[2009년 books and articles|찾아볼 수학책]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * Wilczek, Frank. “Unification of Force and Substance.” arXiv:1512.02094 [hep-Ph, Physics:hep-Th, Physics:physics], December 7, 2015. http://arxiv.org/abs/1512.02094. | ||
+ | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003 | ||
+ | |||
+ | * [http://www.thetangentbundle.net/papers/gauge.pdf Connections, Gauges and Field Theories] | ||
+ | |||
+ | * [http://www.math.cornell.edu/%7Egoldberg/Notes/AboutConnections.pdf WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR?] TIMOTHY E. GOLDBERG | ||
+ | |||
+ | ==articles== | ||
+ | * Slavnov, A. A. “60 Years of Gauge Fields.” arXiv:1511.05713 [hep-Th], November 18, 2015. http://arxiv.org/abs/1511.05713. | ||
+ | * Weatherall, James Owen. ‘Fiber Bundles, Yang-Mills Theory, and General Relativity’. arXiv:1411.3281 [gr-Qc, Physics:hep-Th, Physics:math-Ph, Physics:physics], 12 November 2014. http://arxiv.org/abs/1411.3281. | ||
+ | * [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:gauge theory]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q214850 Q214850] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}] | ||
+ | * [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}] |
2021년 2월 17일 (수) 01:24 기준 최신판
introduction
meaning of the gague invariance
- gauge = measure
- gauge invariance = measurement에 있어서의 invariance를 말함
- Lagrangian should be gauge invariant.
gauge symmetry and measurement
- symmetry implies the existence of something unmeasurable.
- phase is one example
gauge field
- a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
- one example is the electromagnetic field
gauge field tensor
- electromagnetic field tensor \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
- general gauge fields tensor \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)
examples of renormalizable gauge theory
- QED
- QCD
- renormalization
Abelian gauge theory
- abelian gauge theory has a duality
Non-Abelian gauge theory
differential geometry formulation
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
- connection \(A\) = special kind of 1-form
- \(dA\) = 2-form which measures the electromagnetic charge
- Then the Chern class measures the magnetic charge.
Principal G-bundle
3d Chern-Simons theory
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
- analogy with class field theory
- replace \(\Sigma\) by \(spec O_K\)
- then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
- Now from An's article,
메모
encyclopedia
- http://en.wikipedia.org/wiki/principal_bundle
- http://en.wikipedia.org/wiki/Connection_(vector_bundle)
books
- The Geometry of Physics: An Introduction
- An elementary primer for gauge theory
- 찾아볼 수학책
expositions
- Wilczek, Frank. “Unification of Force and Substance.” arXiv:1512.02094 [hep-Ph, Physics:hep-Th, Physics:physics], December 7, 2015. http://arxiv.org/abs/1512.02094.
- On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
articles
- Slavnov, A. A. “60 Years of Gauge Fields.” arXiv:1511.05713 [hep-Th], November 18, 2015. http://arxiv.org/abs/1511.05713.
- Weatherall, James Owen. ‘Fiber Bundles, Yang-Mills Theory, and General Relativity’. arXiv:1411.3281 [gr-Qc, Physics:hep-Th, Physics:math-Ph, Physics:physics], 12 November 2014. http://arxiv.org/abs/1411.3281.
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]
메타데이터
위키데이터
- ID : Q214850
Spacy 패턴 목록
- [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}]