"베이커-캠벨-하우스도르프 공식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→관련논문) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 6개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * 리대수에 정의된 bracket을 이용하여, | + | * 리대수에 정의된 bracket을 이용하여, <math>\exp</math>에 의한 리군의 원소의 곱셈을 정의 |
− | + | :<math> | |
e^x e^y = e^{H(x,y)} | e^x e^y = e^{H(x,y)} | ||
− | + | </math> | |
− | 여기서 | + | 여기서 :<math>H(x,y)=x+y+\frac{1}{2}[x,y]+\frac{1}{12}([x,[x,y]]+[y,[y,x]])+\cdots</math> |
==보조정리== | ==보조정리== | ||
− | * | + | * <math>n\times n</math> 행렬 <math>X, Y</math>에 대하여, 다음이 성립한다 |
− | + | :<math> | |
e^{X}Y e^{-X} = e^{\operatorname{ad}X} Y =Y+\left[X,Y\right]+\frac{1}{2!}[X,[X,Y]]+\frac{1}{3!}[X,[X,[X,Y]]]+\cdots | e^{X}Y e^{-X} = e^{\operatorname{ad}X} Y =Y+\left[X,Y\right]+\frac{1}{2!}[X,[X,Y]]+\frac{1}{3!}[X,[X,[X,Y]]]+\cdots | ||
− | + | </math> | |
==예== | ==예== | ||
===1=== | ===1=== | ||
− | * [[하이젠베르크 군과 대수|하이젠베르크 교환관계식]] | + | * [[하이젠베르크 군과 대수|하이젠베르크 교환관계식]] <math>[P,Q] = -i \hbar I</math> |
− | * | + | * <math>U=e^{i \alpha P},V=e^{i\beta Q}</math>이면 |
− | + | :<math>U Q U^{-1}=Q+\alpha\hbar I</math> | |
− | * 다항식 | + | * 다항식 <math>f(Q)</math>에 대하여, 다음이 성립한다 |
− | + | :<math>U f(Q) U^{-1}=f(Q+\alpha\hbar I)</math> | |
− | + | :<math>UVU^{-1}=e^{i\hbar \alpha \beta}V</math> | |
* [[양자 바일 대수와 양자평면]]의 관계식을 얻는다 | * [[양자 바일 대수와 양자평면]]의 관계식을 얻는다 | ||
27번째 줄: | 27번째 줄: | ||
===2=== | ===2=== | ||
* [[Quantized universal enveloping algebra]] | * [[Quantized universal enveloping algebra]] | ||
− | * | + | * <math>[h,x]=\lambda x</math> 이면, (리대수 <math>\mathfrak{sl}(2)</math> 등에서 나타나는 관계식. [[sl(2)의 유한차원 표현론]] 참조) |
− | + | :<math>q^h x q^{-h}=q^{\lambda} x</math> | |
42번째 줄: | 42번째 줄: | ||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
* http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula | * http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula | ||
+ | |||
+ | |||
+ | ==관련도서== | ||
+ | * Bonfiglioli, Andrea, and Roberta Fulci. Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdorff and Dynkin. Springer Science & Business Media, 2011. | ||
+ | |||
+ | |||
+ | |||
+ | ==리뷰, 에세이, 강의노트== | ||
+ | * Alekseev, [http://www.6ecm.pl/docs/Alekseev.pdf Bernoulli numbers, Drinfeld associators, and the Kashiwara–Vergne problem] | ||
+ | * Kurlin, [http://hamilton.nuigalway.ie/DeBrunCentre/SecondWorkshop/metaBCH.pdf The metabelian BCH formula and compressed Drinfeld associators] | ||
==관련논문== | ==관련논문== | ||
− | * http://arxiv.org/abs/1505.04505 | + | * J. Mostovoy, J. M. Perez-Izquierdo, I. P. Shestakov, A Non-associative Baker-Campbell-Hausdorff formula, arXiv:1605.00953 [math.RA], May 03 2016, http://arxiv.org/abs/1605.00953 |
+ | * Nishimura, Hieokazu, and Hirowaki Takamiya. ‘A Note on the Infinitesimal Baker-Campbell-Hausdorff Formula’. arXiv:1507.01453 [math], 25 June 2015. http://arxiv.org/abs/1507.01453. | ||
+ | * Van-Brunt, Alexander, and Matt Visser. ‘Explicit Baker-Campbell-Hausdorff Formulae for Some Specific Lie Algebras’. arXiv:1505.04505 [hep-Th, Physics:math-Ph, Physics:quant-Ph], 18 May 2015. http://arxiv.org/abs/1505.04505. | ||
* Matone, Marco. “Closed Form of the Baker-Campbell-Hausdorff Formula for Semisimple Complex Lie Algebras.” arXiv:1504.05174 [hep-Ph, Physics:hep-Th, Physics:math-Ph, Physics:quant-Ph], April 20, 2015. http://arxiv.org/abs/1504.05174. | * Matone, Marco. “Closed Form of the Baker-Campbell-Hausdorff Formula for Semisimple Complex Lie Algebras.” arXiv:1504.05174 [hep-Ph, Physics:hep-Th, Physics:math-Ph, Physics:quant-Ph], April 20, 2015. http://arxiv.org/abs/1504.05174. | ||
* Matone, Marco. ‘Classification of Commutator Algebras Leading to the New Type of Closed Baker-Campbell-Hausdorff Formulas’. arXiv:1503.08198 [hep-Th, Physics:math-Ph, Physics:quant-Ph], 27 March 2015. http://arxiv.org/abs/1503.08198. | * Matone, Marco. ‘Classification of Commutator Algebras Leading to the New Type of Closed Baker-Campbell-Hausdorff Formulas’. arXiv:1503.08198 [hep-Th, Physics:math-Ph, Physics:quant-Ph], 27 March 2015. http://arxiv.org/abs/1503.08198. | ||
52번째 줄: | 64번째 줄: | ||
* Van-Brunt, Alexander, and Matt Visser. “Special-Case Closed Form of the Baker-Campbell-Hausdorff Formula.” arXiv:1501.02506 [math-Ph, Physics:quant-Ph], January 11, 2015. http://arxiv.org/abs/1501.02506. | * Van-Brunt, Alexander, and Matt Visser. “Special-Case Closed Form of the Baker-Campbell-Hausdorff Formula.” arXiv:1501.02506 [math-Ph, Physics:quant-Ph], January 11, 2015. http://arxiv.org/abs/1501.02506. | ||
* Casas, Fernando, and Ander Murua. “An Efficient Algorithm for Computing the Baker–Campbell–Hausdorff Series and Some of Its Applications.” Journal of Mathematical Physics 50, no. 3 (March 1, 2009): 033513. doi:10.1063/1.3078418. | * Casas, Fernando, and Ander Murua. “An Efficient Algorithm for Computing the Baker–Campbell–Hausdorff Series and Some of Its Applications.” Journal of Mathematical Physics 50, no. 3 (March 1, 2009): 033513. doi:10.1063/1.3078418. | ||
− | * Newman, Morris, and Robert C. Thompson. “Numerical Values of Goldberg’s Coefficients in the Series for | + | * Alekseev, Anton, and Charles Torossian. ‘The Kashiwara-Vergne Conjecture and Drinfeld’s Associators’. arXiv:0802.4300 [math], 28 February 2008. http://arxiv.org/abs/0802.4300. |
+ | * Newman, Morris, and Robert C. Thompson. “Numerical Values of Goldberg’s Coefficients in the Series for <math>\log e^xe^y</math>” Mathematics of Computation 48, no. 177 (1987): 265–71. doi:10.1090/S0025-5718-1987-0866114-9. | ||
* Kashiwara, Masaki, and Michèle Vergne. ‘The Campbell-Hausdorff Formula and Invariant Hyperfunctions’. Inventiones Mathematicae 47, no. 3 (1 October 1978): 249–72. doi:10.1007/BF01579213. | * Kashiwara, Masaki, and Michèle Vergne. ‘The Campbell-Hausdorff Formula and Invariant Hyperfunctions’. Inventiones Mathematicae 47, no. 3 (1 October 1978): 249–72. doi:10.1007/BF01579213. | ||
− | |||
− | |||
[[분류:리군과 리대수]] | [[분류:리군과 리대수]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q160131 Q160131] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LEMMA': 'baker'}] |
2021년 2월 17일 (수) 02:26 기준 최신판
개요
- 리대수에 정의된 bracket을 이용하여, \(\exp\)에 의한 리군의 원소의 곱셈을 정의
\[ e^x e^y = e^{H(x,y)} \] 여기서 \[H(x,y)=x+y+\frac{1}{2}[x,y]+\frac{1}{12}([x,[x,y]]+[y,[y,x]])+\cdots\]
보조정리
- \(n\times n\) 행렬 \(X, Y\)에 대하여, 다음이 성립한다
\[ e^{X}Y e^{-X} = e^{\operatorname{ad}X} Y =Y+\left[X,Y\right]+\frac{1}{2!}[X,[X,Y]]+\frac{1}{3!}[X,[X,[X,Y]]]+\cdots \]
예
1
- 하이젠베르크 교환관계식 \([P,Q] = -i \hbar I\)
- \(U=e^{i \alpha P},V=e^{i\beta Q}\)이면
\[U Q U^{-1}=Q+\alpha\hbar I\]
- 다항식 \(f(Q)\)에 대하여, 다음이 성립한다
\[U f(Q) U^{-1}=f(Q+\alpha\hbar I)\] \[UVU^{-1}=e^{i\hbar \alpha \beta}V\]
- 양자 바일 대수와 양자평면의 관계식을 얻는다
2
- Quantized universal enveloping algebra
- \([h,x]=\lambda x\) 이면, (리대수 \(\mathfrak{sl}(2)\) 등에서 나타나는 관계식. sl(2)의 유한차원 표현론 참조)
\[q^h x q^{-h}=q^{\lambda} x\]
메모
- Baker-Campbell-Hausdorff formula
- http://terrytao.wordpress.com/2011/09/01/254a-notes-1-lie-groups-lie-algebras-and-the-baker-campbell-hausdorff-formula/
매스매티카 파일 및 계산 리소스
사전 형태의 자료
관련도서
- Bonfiglioli, Andrea, and Roberta Fulci. Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdorff and Dynkin. Springer Science & Business Media, 2011.
리뷰, 에세이, 강의노트
- Alekseev, Bernoulli numbers, Drinfeld associators, and the Kashiwara–Vergne problem
- Kurlin, The metabelian BCH formula and compressed Drinfeld associators
관련논문
- J. Mostovoy, J. M. Perez-Izquierdo, I. P. Shestakov, A Non-associative Baker-Campbell-Hausdorff formula, arXiv:1605.00953 [math.RA], May 03 2016, http://arxiv.org/abs/1605.00953
- Nishimura, Hieokazu, and Hirowaki Takamiya. ‘A Note on the Infinitesimal Baker-Campbell-Hausdorff Formula’. arXiv:1507.01453 [math], 25 June 2015. http://arxiv.org/abs/1507.01453.
- Van-Brunt, Alexander, and Matt Visser. ‘Explicit Baker-Campbell-Hausdorff Formulae for Some Specific Lie Algebras’. arXiv:1505.04505 [hep-Th, Physics:math-Ph, Physics:quant-Ph], 18 May 2015. http://arxiv.org/abs/1505.04505.
- Matone, Marco. “Closed Form of the Baker-Campbell-Hausdorff Formula for Semisimple Complex Lie Algebras.” arXiv:1504.05174 [hep-Ph, Physics:hep-Th, Physics:math-Ph, Physics:quant-Ph], April 20, 2015. http://arxiv.org/abs/1504.05174.
- Matone, Marco. ‘Classification of Commutator Algebras Leading to the New Type of Closed Baker-Campbell-Hausdorff Formulas’. arXiv:1503.08198 [hep-Th, Physics:math-Ph, Physics:quant-Ph], 27 March 2015. http://arxiv.org/abs/1503.08198.
- Matone, Marco. ‘An Algorithm for the Baker-Campbell-Hausdorff Formula’. arXiv:1502.06589 [hep-Ph, Physics:hep-Th, Physics:math-Ph, Physics:quant-Ph], 23 February 2015. http://arxiv.org/abs/1502.06589.
- Van-Brunt, Alexander, and Matt Visser. “Simplifying the Reinsch Algorithm for the Baker-Campbell-Hausdorff Series.” arXiv:1501.05034 [hep-Th, Physics:math-Ph, Physics:quant-Ph], January 20, 2015. http://arxiv.org/abs/1501.05034.
- Van-Brunt, Alexander, and Matt Visser. “Special-Case Closed Form of the Baker-Campbell-Hausdorff Formula.” arXiv:1501.02506 [math-Ph, Physics:quant-Ph], January 11, 2015. http://arxiv.org/abs/1501.02506.
- Casas, Fernando, and Ander Murua. “An Efficient Algorithm for Computing the Baker–Campbell–Hausdorff Series and Some of Its Applications.” Journal of Mathematical Physics 50, no. 3 (March 1, 2009): 033513. doi:10.1063/1.3078418.
- Alekseev, Anton, and Charles Torossian. ‘The Kashiwara-Vergne Conjecture and Drinfeld’s Associators’. arXiv:0802.4300 [math], 28 February 2008. http://arxiv.org/abs/0802.4300.
- Newman, Morris, and Robert C. Thompson. “Numerical Values of Goldberg’s Coefficients in the Series for \(\log e^xe^y\)” Mathematics of Computation 48, no. 177 (1987): 265–71. doi:10.1090/S0025-5718-1987-0866114-9.
- Kashiwara, Masaki, and Michèle Vergne. ‘The Campbell-Hausdorff Formula and Invariant Hyperfunctions’. Inventiones Mathematicae 47, no. 3 (1 October 1978): 249–72. doi:10.1007/BF01579213.
메타데이터
위키데이터
- ID : Q160131
Spacy 패턴 목록
- [{'LEMMA': 'baker'}]