"E8 루트 시스템"의 두 판 사이의 차이
(피타고라스님이 이 페이지에 Borcherds_on_LieGroups.pdf 파일을 등록하셨습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 24개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | * | + | * 다양한 수학적 대상이 E8 이라는 이름으로 불린다 |
− | * | + | ** 루트 시스템으로서의 E8 |
− | * | + | ** 정수 계수 이차형식으로서의 E8 |
− | * | + | ** 단순리대수로서의 E8 |
− | * | + | ** 단순리군으로서의 E8 |
− | + | ||
− | + | ==딘킨 다이어그램== | |
− | + | [[파일:2570648-389px-Dynkin_diagram_E8.svg.png]] | |
− | + | [[파일:E81.png]] | |
− | |||
− | + | 카르탄 행렬 | |
+ | :<math> | ||
+ | \left( | ||
+ | \begin{array}{cccccccc} | ||
+ | 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ | ||
+ | -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ | ||
+ | 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\ | ||
+ | 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\ | ||
+ | 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \\ | ||
+ | \end{array} | ||
+ | \right) | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | ==루트 시스템== | ||
+ | * 240개의 8차원 벡터로 구성 | ||
+ | * 테이블 | ||
+ | :<math> | ||
+ | \begin{array}{c|c|c|c} | ||
+ | \text{} & \text{height} & \text{label} & \text{coordinate} \\ | ||
+ | \hline | ||
+ | 1 & 1 & \{1,0,0,0,0,0,0,0\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 2 & 1 & \{0,1,0,0,0,0,0,0\} & \{-1,1,0,0,0,0,0,0\} \\ | ||
+ | 3 & 1 & \{0,0,1,0,0,0,0,0\} & \{0,-1,1,0,0,0,0,0\} \\ | ||
+ | 4 & 1 & \{0,0,0,1,0,0,0,0\} & \{0,0,-1,1,0,0,0,0\} \\ | ||
+ | 5 & 1 & \{0,0,0,0,1,0,0,0\} & \{0,0,0,-1,1,0,0,0\} \\ | ||
+ | 6 & 1 & \{0,0,0,0,0,1,0,0\} & \{0,0,0,0,-1,1,0,0\} \\ | ||
+ | 7 & 1 & \{0,0,0,0,0,0,1,0\} & \{0,0,0,0,0,-1,1,0\} \\ | ||
+ | 8 & 1 & \{0,0,0,0,0,0,0,1\} & \{1,1,0,0,0,0,0,0\} \\ | ||
+ | 9 & 2 & \{0,0,1,0,0,0,0,1\} & \{1,0,1,0,0,0,0,0\} \\ | ||
+ | 10 & 2 & \{0,0,0,0,0,1,1,0\} & \{0,0,0,0,-1,0,1,0\} \\ | ||
+ | 11 & 2 & \{0,0,0,0,1,1,0,0\} & \{0,0,0,-1,0,1,0,0\} \\ | ||
+ | 12 & 2 & \{0,0,0,1,1,0,0,0\} & \{0,0,-1,0,1,0,0,0\} \\ | ||
+ | 13 & 2 & \{0,0,1,1,0,0,0,0\} & \{0,-1,0,1,0,0,0,0\} \\ | ||
+ | 14 & 2 & \{1,1,0,0,0,0,0,0\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 15 & 2 & \{0,1,1,0,0,0,0,0\} & \{-1,0,1,0,0,0,0,0\} \\ | ||
+ | 16 & 3 & \{0,0,1,1,0,0,0,1\} & \{1,0,0,1,0,0,0,0\} \\ | ||
+ | 17 & 3 & \{0,1,1,0,0,0,0,1\} & \{0,1,1,0,0,0,0,0\} \\ | ||
+ | 18 & 3 & \{0,0,0,0,1,1,1,0\} & \{0,0,0,-1,0,0,1,0\} \\ | ||
+ | 19 & 3 & \{0,0,0,1,1,1,0,0\} & \{0,0,-1,0,0,1,0,0\} \\ | ||
+ | 20 & 3 & \{0,0,1,1,1,0,0,0\} & \{0,-1,0,0,1,0,0,0\} \\ | ||
+ | 21 & 3 & \{1,1,1,0,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 22 & 3 & \{0,1,1,1,0,0,0,0\} & \{-1,0,0,1,0,0,0,0\} \\ | ||
+ | 23 & 4 & \{0,0,1,1,1,0,0,1\} & \{1,0,0,0,1,0,0,0\} \\ | ||
+ | 24 & 4 & \{1,1,1,0,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 25 & 4 & \{0,1,1,1,0,0,0,1\} & \{0,1,0,1,0,0,0,0\} \\ | ||
+ | 26 & 4 & \{0,0,0,1,1,1,1,0\} & \{0,0,-1,0,0,0,1,0\} \\ | ||
+ | 27 & 4 & \{0,0,1,1,1,1,0,0\} & \{0,-1,0,0,0,1,0,0\} \\ | ||
+ | 28 & 4 & \{1,1,1,1,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 29 & 4 & \{0,1,1,1,1,0,0,0\} & \{-1,0,0,0,1,0,0,0\} \\ | ||
+ | 30 & 5 & \{0,0,1,1,1,1,0,1\} & \{1,0,0,0,0,1,0,0\} \\ | ||
+ | 31 & 5 & \{1,1,1,1,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 32 & 5 & \{0,1,1,1,1,0,0,1\} & \{0,1,0,0,1,0,0,0\} \\ | ||
+ | 33 & 5 & \{0,1,2,1,0,0,0,1\} & \{0,0,1,1,0,0,0,0\} \\ | ||
+ | 34 & 5 & \{0,0,1,1,1,1,1,0\} & \{0,-1,0,0,0,0,1,0\} \\ | ||
+ | 35 & 5 & \{1,1,1,1,1,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 36 & 5 & \{0,1,1,1,1,1,0,0\} & \{-1,0,0,0,0,1,0,0\} \\ | ||
+ | 37 & 6 & \{0,0,1,1,1,1,1,1\} & \{1,0,0,0,0,0,1,0\} \\ | ||
+ | 38 & 6 & \{1,1,1,1,1,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 39 & 6 & \{1,1,2,1,0,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 40 & 6 & \{0,1,1,1,1,1,0,1\} & \{0,1,0,0,0,1,0,0\} \\ | ||
+ | 41 & 6 & \{0,1,2,1,1,0,0,1\} & \{0,0,1,0,1,0,0,0\} \\ | ||
+ | 42 & 6 & \{1,1,1,1,1,1,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 43 & 6 & \{0,1,1,1,1,1,1,0\} & \{-1,0,0,0,0,0,1,0\} \\ | ||
+ | 44 & 7 & \{1,1,1,1,1,1,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 45 & 7 & \{1,1,2,1,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 46 & 7 & \{0,1,1,1,1,1,1,1\} & \{0,1,0,0,0,0,1,0\} \\ | ||
+ | 47 & 7 & \{0,1,2,1,1,1,0,1\} & \{0,0,1,0,0,1,0,0\} \\ | ||
+ | 48 & 7 & \{0,1,2,2,1,0,0,1\} & \{0,0,0,1,1,0,0,0\} \\ | ||
+ | 49 & 7 & \{1,2,2,1,0,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 50 & 7 & \{1,1,1,1,1,1,1,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 51 & 8 & \{1,1,1,1,1,1,1,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 52 & 8 & \{1,1,2,1,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 53 & 8 & \{1,1,2,2,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 54 & 8 & \{0,1,2,1,1,1,1,1\} & \{0,0,1,0,0,0,1,0\} \\ | ||
+ | 55 & 8 & \{0,1,2,2,1,1,0,1\} & \{0,0,0,1,0,1,0,0\} \\ | ||
+ | 56 & 8 & \{1,2,2,1,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 57 & 9 & \{1,1,2,1,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 58 & 9 & \{1,1,2,2,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 59 & 9 & \{0,1,2,2,1,1,1,1\} & \{0,0,0,1,0,0,1,0\} \\ | ||
+ | 60 & 9 & \{0,1,2,2,2,1,0,1\} & \{0,0,0,0,1,1,0,0\} \\ | ||
+ | 61 & 9 & \{1,2,2,1,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 62 & 9 & \{1,2,2,2,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 63 & 10 & \{1,1,2,2,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 64 & 10 & \{1,1,2,2,2,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 65 & 10 & \{0,1,2,2,2,1,1,1\} & \{0,0,0,0,1,0,1,0\} \\ | ||
+ | 66 & 10 & \{1,2,2,1,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 67 & 10 & \{1,2,2,2,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 68 & 10 & \{1,2,3,2,1,0,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 69 & 11 & \{1,2,3,2,1,0,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 70 & 11 & \{1,1,2,2,2,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 71 & 11 & \{0,1,2,2,2,2,1,1\} & \{0,0,0,0,0,1,1,0\} \\ | ||
+ | 72 & 11 & \{1,2,2,2,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 73 & 11 & \{1,2,2,2,2,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 74 & 11 & \{1,2,3,2,1,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 75 & 12 & \{1,2,3,2,1,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 76 & 12 & \{1,1,2,2,2,2,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 77 & 12 & \{1,2,2,2,2,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 78 & 12 & \{1,2,3,2,1,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 79 & 12 & \{1,2,3,2,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 80 & 13 & \{1,2,3,2,1,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 81 & 13 & \{1,2,3,2,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 82 & 13 & \{1,2,2,2,2,2,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 83 & 13 & \{1,2,3,2,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 84 & 13 & \{1,2,3,3,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 85 & 14 & \{1,2,3,2,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 86 & 14 & \{1,2,3,3,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 87 & 14 & \{1,2,3,2,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 88 & 14 & \{1,2,3,3,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 89 & 15 & \{1,2,3,2,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 90 & 15 & \{1,2,3,3,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 91 & 15 & \{1,2,4,3,2,1,0,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 92 & 15 & \{1,2,3,3,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 93 & 16 & \{1,2,3,3,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 94 & 16 & \{1,2,4,3,2,1,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 95 & 16 & \{1,3,4,3,2,1,0,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 96 & 16 & \{1,2,3,3,3,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 97 & 17 & \{1,2,3,3,3,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 98 & 17 & \{1,2,4,3,2,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 99 & 17 & \{2,3,4,3,2,1,0,2\} & \{0,0,0,0,0,0,-1,1\} \\ | ||
+ | 100 & 17 & \{1,3,4,3,2,1,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 101 & 18 & \{1,2,4,3,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 102 & 18 & \{2,3,4,3,2,1,1,2\} & \{0,0,0,0,0,-1,0,1\} \\ | ||
+ | 103 & 18 & \{1,3,4,3,2,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 104 & 19 & \{1,2,4,4,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 105 & 19 & \{2,3,4,3,2,2,1,2\} & \{0,0,0,0,-1,0,0,1\} \\ | ||
+ | 106 & 19 & \{1,3,4,3,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 107 & 20 & \{2,3,4,3,3,2,1,2\} & \{0,0,0,-1,0,0,0,1\} \\ | ||
+ | 108 & 20 & \{1,3,4,4,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 109 & 21 & \{2,3,4,4,3,2,1,2\} & \{0,0,-1,0,0,0,0,1\} \\ | ||
+ | 110 & 21 & \{1,3,5,4,3,2,1,2\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 111 & 22 & \{1,3,5,4,3,2,1,3\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ | ||
+ | 112 & 22 & \{2,3,5,4,3,2,1,2\} & \{0,-1,0,0,0,0,0,1\} \\ | ||
+ | 113 & 23 & \{2,3,5,4,3,2,1,3\} & \{1,0,0,0,0,0,0,1\} \\ | ||
+ | 114 & 23 & \{2,4,5,4,3,2,1,2\} & \{-1,0,0,0,0,0,0,1\} \\ | ||
+ | 115 & 24 & \{2,4,5,4,3,2,1,3\} & \{0,1,0,0,0,0,0,1\} \\ | ||
+ | 116 & 25 & \{2,4,6,4,3,2,1,3\} & \{0,0,1,0,0,0,0,1\} \\ | ||
+ | 117 & 26 & \{2,4,6,5,3,2,1,3\} & \{0,0,0,1,0,0,0,1\} \\ | ||
+ | 118 & 27 & \{2,4,6,5,4,2,1,3\} & \{0,0,0,0,1,0,0,1\} \\ | ||
+ | 119 & 28 & \{2,4,6,5,4,3,1,3\} & \{0,0,0,0,0,1,0,1\} \\ | ||
+ | 120 & 29 & \{2,4,6,5,4,3,2,3\} & \{0,0,0,0,0,0,1,1\} | ||
+ | \end{array} | ||
+ | </math> | ||
+ | |||
+ | |||
− | + | ==메모== | |
− | * | + | * 정이십면체와 E8 (via Mckay correspondence) |
− | |||
− | + | ||
− | |||
+ | ==관련된 항목들== | ||
* [[Kissing number and sphere packings]] | * [[Kissing number and sphere packings]] | ||
+ | * [[E8 격자]] | ||
+ | |||
+ | |||
+ | ===관련된 학부 과목과 미리 알고 있으면 좋은 것들=== | ||
+ | |||
+ | * [[선형대수학]] | ||
− | + | ||
− | + | ===관련된 대학원 과목=== | |
+ | * [[이차형식]] | ||
+ | * [[리군과 리대수]] | ||
+ | * [[리대수 g2의 유한차원 표현론]] | ||
− | |||
− | + | ==계산 리소스== | |
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxZFZVdFFrMkJDWHc/edit | ||
− | + | ||
+ | ==사전 형태의 자료== | ||
* http://en.wikipedia.org/wiki/E8 | * http://en.wikipedia.org/wiki/E8 | ||
− | |||
− | |||
− | |||
− | |||
− | * Bertram Kostant (Baez's webpage)[http://math.ucr.edu/home/baez/kostant/ ] | + | |
+ | |||
+ | ==메모== | ||
+ | * [http://www.madore.org/~david/math/e8w.html The E8 root system] | ||
+ | * Borcherds' lectures on Lie groups from [http://math.berkeley.edu/%7Eanton/index.php?m1=writings Anton's webpage][http://bomber0.springnote.com[파일:1924972-]] | ||
+ | ** [[2570648/attachments/1120778|Borcherds_on_LieGroups.pdf]] | ||
+ | * Bertram Kostant (Baez's webpage)[http://math.ucr.edu/home/baez/kostant/ ] | ||
** [http://math.ucr.edu/home/baez/kostant/ On Some Mathematics in Garrett Lisi's 'E8 Theory of Everything'] | ** [http://math.ucr.edu/home/baez/kostant/ On Some Mathematics in Garrett Lisi's 'E8 Theory of Everything'] | ||
+ | * John Baez | ||
+ | ** [http://math.ucr.edu/home/baez/numbers/ My Favorite Numbers] : [http://math.ucr.edu/home/baez/numbers/5.pdf 5], [http://math.ucr.edu/home/baez/numbers/8.pdf%20 8], and [http://math.ucr.edu/home/baez/numbers/24.pdf 24] | ||
+ | |||
+ | ==리뷰, 에세이, 강의노트== | ||
+ | * [http://bomber0.byus.net/ 피타고라스의 창] | ||
+ | ** [http://bomber0.byus.net/index.php/2008/08/01/702 E8이란 무엇인가 (1) : 들어가며] | ||
+ | ** [http://bomber0.byus.net/index.php/2008/08/02/703 E8이란 무엇인가 (2) : 8차원에서 내려온 그림자] | ||
+ | ** [http://bomber0.byus.net/index.php/2008/08/03/704 E8이란 무엇인가 (3) : 8차원의 눈꽃송이] | ||
+ | ** [http://bomber0.byus.net/index.php/2008/08/05/705 E8이란 무엇인가 (번외편) - E8과 모뎀] | ||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | * Dechant, Pierre-Philippe. “The Birth of <math>E_8</math> out of the Spinors of the Icosahedron.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 472, no. 2185 (January 2016): 20150504. doi:10.1098/rspa.2015.0504. | ||
− | + | [[분류:리군과 리대수]] | |
− | + | [[분류:목록]] | |
− | + | ==메타데이터== | |
− | * | + | ===위키데이터=== |
− | + | * ID : [https://www.wikidata.org/wiki/Q298759 Q298759] | |
− | + | ===Spacy 패턴 목록=== | |
− | * [ | + | * [{'LEMMA': 'e8'}] |
2021년 2월 17일 (수) 04:47 기준 최신판
개요
- 다양한 수학적 대상이 E8 이라는 이름으로 불린다
- 루트 시스템으로서의 E8
- 정수 계수 이차형식으로서의 E8
- 단순리대수로서의 E8
- 단순리군으로서의 E8
딘킨 다이어그램
카르탄 행렬
\[
\left(
\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \\
\end{array}
\right)
\]
루트 시스템
- 240개의 8차원 벡터로 구성
- 테이블
\[ \begin{array}{c|c|c|c} \text{} & \text{height} & \text{label} & \text{coordinate} \\ \hline 1 & 1 & \{1,0,0,0,0,0,0,0\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 2 & 1 & \{0,1,0,0,0,0,0,0\} & \{-1,1,0,0,0,0,0,0\} \\ 3 & 1 & \{0,0,1,0,0,0,0,0\} & \{0,-1,1,0,0,0,0,0\} \\ 4 & 1 & \{0,0,0,1,0,0,0,0\} & \{0,0,-1,1,0,0,0,0\} \\ 5 & 1 & \{0,0,0,0,1,0,0,0\} & \{0,0,0,-1,1,0,0,0\} \\ 6 & 1 & \{0,0,0,0,0,1,0,0\} & \{0,0,0,0,-1,1,0,0\} \\ 7 & 1 & \{0,0,0,0,0,0,1,0\} & \{0,0,0,0,0,-1,1,0\} \\ 8 & 1 & \{0,0,0,0,0,0,0,1\} & \{1,1,0,0,0,0,0,0\} \\ 9 & 2 & \{0,0,1,0,0,0,0,1\} & \{1,0,1,0,0,0,0,0\} \\ 10 & 2 & \{0,0,0,0,0,1,1,0\} & \{0,0,0,0,-1,0,1,0\} \\ 11 & 2 & \{0,0,0,0,1,1,0,0\} & \{0,0,0,-1,0,1,0,0\} \\ 12 & 2 & \{0,0,0,1,1,0,0,0\} & \{0,0,-1,0,1,0,0,0\} \\ 13 & 2 & \{0,0,1,1,0,0,0,0\} & \{0,-1,0,1,0,0,0,0\} \\ 14 & 2 & \{1,1,0,0,0,0,0,0\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 15 & 2 & \{0,1,1,0,0,0,0,0\} & \{-1,0,1,0,0,0,0,0\} \\ 16 & 3 & \{0,0,1,1,0,0,0,1\} & \{1,0,0,1,0,0,0,0\} \\ 17 & 3 & \{0,1,1,0,0,0,0,1\} & \{0,1,1,0,0,0,0,0\} \\ 18 & 3 & \{0,0,0,0,1,1,1,0\} & \{0,0,0,-1,0,0,1,0\} \\ 19 & 3 & \{0,0,0,1,1,1,0,0\} & \{0,0,-1,0,0,1,0,0\} \\ 20 & 3 & \{0,0,1,1,1,0,0,0\} & \{0,-1,0,0,1,0,0,0\} \\ 21 & 3 & \{1,1,1,0,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 22 & 3 & \{0,1,1,1,0,0,0,0\} & \{-1,0,0,1,0,0,0,0\} \\ 23 & 4 & \{0,0,1,1,1,0,0,1\} & \{1,0,0,0,1,0,0,0\} \\ 24 & 4 & \{1,1,1,0,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 25 & 4 & \{0,1,1,1,0,0,0,1\} & \{0,1,0,1,0,0,0,0\} \\ 26 & 4 & \{0,0,0,1,1,1,1,0\} & \{0,0,-1,0,0,0,1,0\} \\ 27 & 4 & \{0,0,1,1,1,1,0,0\} & \{0,-1,0,0,0,1,0,0\} \\ 28 & 4 & \{1,1,1,1,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 29 & 4 & \{0,1,1,1,1,0,0,0\} & \{-1,0,0,0,1,0,0,0\} \\ 30 & 5 & \{0,0,1,1,1,1,0,1\} & \{1,0,0,0,0,1,0,0\} \\ 31 & 5 & \{1,1,1,1,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 32 & 5 & \{0,1,1,1,1,0,0,1\} & \{0,1,0,0,1,0,0,0\} \\ 33 & 5 & \{0,1,2,1,0,0,0,1\} & \{0,0,1,1,0,0,0,0\} \\ 34 & 5 & \{0,0,1,1,1,1,1,0\} & \{0,-1,0,0,0,0,1,0\} \\ 35 & 5 & \{1,1,1,1,1,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 36 & 5 & \{0,1,1,1,1,1,0,0\} & \{-1,0,0,0,0,1,0,0\} \\ 37 & 6 & \{0,0,1,1,1,1,1,1\} & \{1,0,0,0,0,0,1,0\} \\ 38 & 6 & \{1,1,1,1,1,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 39 & 6 & \{1,1,2,1,0,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 40 & 6 & \{0,1,1,1,1,1,0,1\} & \{0,1,0,0,0,1,0,0\} \\ 41 & 6 & \{0,1,2,1,1,0,0,1\} & \{0,0,1,0,1,0,0,0\} \\ 42 & 6 & \{1,1,1,1,1,1,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 43 & 6 & \{0,1,1,1,1,1,1,0\} & \{-1,0,0,0,0,0,1,0\} \\ 44 & 7 & \{1,1,1,1,1,1,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 45 & 7 & \{1,1,2,1,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 46 & 7 & \{0,1,1,1,1,1,1,1\} & \{0,1,0,0,0,0,1,0\} \\ 47 & 7 & \{0,1,2,1,1,1,0,1\} & \{0,0,1,0,0,1,0,0\} \\ 48 & 7 & \{0,1,2,2,1,0,0,1\} & \{0,0,0,1,1,0,0,0\} \\ 49 & 7 & \{1,2,2,1,0,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 50 & 7 & \{1,1,1,1,1,1,1,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 51 & 8 & \{1,1,1,1,1,1,1,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 52 & 8 & \{1,1,2,1,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 53 & 8 & \{1,1,2,2,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 54 & 8 & \{0,1,2,1,1,1,1,1\} & \{0,0,1,0,0,0,1,0\} \\ 55 & 8 & \{0,1,2,2,1,1,0,1\} & \{0,0,0,1,0,1,0,0\} \\ 56 & 8 & \{1,2,2,1,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 57 & 9 & \{1,1,2,1,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 58 & 9 & \{1,1,2,2,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 59 & 9 & \{0,1,2,2,1,1,1,1\} & \{0,0,0,1,0,0,1,0\} \\ 60 & 9 & \{0,1,2,2,2,1,0,1\} & \{0,0,0,0,1,1,0,0\} \\ 61 & 9 & \{1,2,2,1,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 62 & 9 & \{1,2,2,2,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 63 & 10 & \{1,1,2,2,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 64 & 10 & \{1,1,2,2,2,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 65 & 10 & \{0,1,2,2,2,1,1,1\} & \{0,0,0,0,1,0,1,0\} \\ 66 & 10 & \{1,2,2,1,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 67 & 10 & \{1,2,2,2,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 68 & 10 & \{1,2,3,2,1,0,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 69 & 11 & \{1,2,3,2,1,0,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 70 & 11 & \{1,1,2,2,2,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 71 & 11 & \{0,1,2,2,2,2,1,1\} & \{0,0,0,0,0,1,1,0\} \\ 72 & 11 & \{1,2,2,2,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 73 & 11 & \{1,2,2,2,2,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 74 & 11 & \{1,2,3,2,1,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 75 & 12 & \{1,2,3,2,1,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 76 & 12 & \{1,1,2,2,2,2,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 77 & 12 & \{1,2,2,2,2,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 78 & 12 & \{1,2,3,2,1,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 79 & 12 & \{1,2,3,2,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 80 & 13 & \{1,2,3,2,1,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 81 & 13 & \{1,2,3,2,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 82 & 13 & \{1,2,2,2,2,2,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 83 & 13 & \{1,2,3,2,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 84 & 13 & \{1,2,3,3,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 85 & 14 & \{1,2,3,2,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 86 & 14 & \{1,2,3,3,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 87 & 14 & \{1,2,3,2,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 88 & 14 & \{1,2,3,3,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 89 & 15 & \{1,2,3,2,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 90 & 15 & \{1,2,3,3,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 91 & 15 & \{1,2,4,3,2,1,0,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 92 & 15 & \{1,2,3,3,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 93 & 16 & \{1,2,3,3,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 94 & 16 & \{1,2,4,3,2,1,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 95 & 16 & \{1,3,4,3,2,1,0,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 96 & 16 & \{1,2,3,3,3,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 97 & 17 & \{1,2,3,3,3,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 98 & 17 & \{1,2,4,3,2,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 99 & 17 & \{2,3,4,3,2,1,0,2\} & \{0,0,0,0,0,0,-1,1\} \\ 100 & 17 & \{1,3,4,3,2,1,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 101 & 18 & \{1,2,4,3,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 102 & 18 & \{2,3,4,3,2,1,1,2\} & \{0,0,0,0,0,-1,0,1\} \\ 103 & 18 & \{1,3,4,3,2,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 104 & 19 & \{1,2,4,4,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 105 & 19 & \{2,3,4,3,2,2,1,2\} & \{0,0,0,0,-1,0,0,1\} \\ 106 & 19 & \{1,3,4,3,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 107 & 20 & \{2,3,4,3,3,2,1,2\} & \{0,0,0,-1,0,0,0,1\} \\ 108 & 20 & \{1,3,4,4,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 109 & 21 & \{2,3,4,4,3,2,1,2\} & \{0,0,-1,0,0,0,0,1\} \\ 110 & 21 & \{1,3,5,4,3,2,1,2\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 111 & 22 & \{1,3,5,4,3,2,1,3\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 112 & 22 & \{2,3,5,4,3,2,1,2\} & \{0,-1,0,0,0,0,0,1\} \\ 113 & 23 & \{2,3,5,4,3,2,1,3\} & \{1,0,0,0,0,0,0,1\} \\ 114 & 23 & \{2,4,5,4,3,2,1,2\} & \{-1,0,0,0,0,0,0,1\} \\ 115 & 24 & \{2,4,5,4,3,2,1,3\} & \{0,1,0,0,0,0,0,1\} \\ 116 & 25 & \{2,4,6,4,3,2,1,3\} & \{0,0,1,0,0,0,0,1\} \\ 117 & 26 & \{2,4,6,5,3,2,1,3\} & \{0,0,0,1,0,0,0,1\} \\ 118 & 27 & \{2,4,6,5,4,2,1,3\} & \{0,0,0,0,1,0,0,1\} \\ 119 & 28 & \{2,4,6,5,4,3,1,3\} & \{0,0,0,0,0,1,0,1\} \\ 120 & 29 & \{2,4,6,5,4,3,2,3\} & \{0,0,0,0,0,0,1,1\} \end{array} \]
메모
- 정이십면체와 E8 (via Mckay correspondence)
관련된 항목들
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
계산 리소스
사전 형태의 자료
메모
- The E8 root system
- Borcherds' lectures on Lie groups from Anton's webpage[파일:1924972-]
- Bertram Kostant (Baez's webpage)[1]
- John Baez
- My Favorite Numbers : 5, 8, and 24
리뷰, 에세이, 강의노트
관련논문
- Dechant, Pierre-Philippe. “The Birth of \(E_8\) out of the Spinors of the Icosahedron.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 472, no. 2185 (January 2016): 20150504. doi:10.1098/rspa.2015.0504.
메타데이터
위키데이터
- ID : Q298759
Spacy 패턴 목록
- [{'LEMMA': 'e8'}]