"E8 루트 시스템"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
*  다양한 수학적 대상이 E8 이라는 이름으로 불린다<br>
+
*  다양한 수학적 대상이 E8 이라는 이름으로 불린다
** root system 으로서의 E8
+
** 루트 시스템으로서의 E8
 
** 정수 계수 이차형식으로서의 E8
 
** 정수 계수 이차형식으로서의 E8
 
** 단순리대수로서의 E8
 
** 단순리대수로서의 E8
 
** 단순리군으로서의 E8
 
** 단순리군으로서의 E8
  
 
+
 
 
 
 
  
 
==딘킨 다이어그램==
 
==딘킨 다이어그램==
  
 
+
[[파일:2570648-389px-Dynkin_diagram_E8.svg.png]]
  
[/pages/2570648/attachments/1120756 389px-Dynkin_diagram_E8.svg.png]
+
[[파일:E81.png]]
  
 
 
 
 
 
  
 
카르탄 행렬
 
카르탄 행렬
 +
:<math>
 +
\left(
 +
\begin{array}{cccccccc}
 +
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 +
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
 +
0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
 +
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
 +
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
 +
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
 +
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
 +
0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \\
 +
\end{array}
 +
\right)
 +
</math>
  
<math>\left( \begin{array}{cccccccc} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\  -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\  0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\  0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\  0 & 0 & 0 & -1 & 2 & -1 & -1 & 0 \\  0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 \\  0 & 0 & 0 & 0 & -1 & 0 & 2 & -1 \\  0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{array} \right)</math>
+
   
 
 
 
 
  
 
+
==루트 시스템==
 +
* 240개의 8차원 벡터로 구성
 +
* 테이블
 +
:<math>
 +
\begin{array}{c|c|c|c}
 +
\text{} & \text{height} & \text{label} & \text{coordinate} \\
 +
\hline
 +
1 & 1 & \{1,0,0,0,0,0,0,0\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
2 & 1 & \{0,1,0,0,0,0,0,0\} & \{-1,1,0,0,0,0,0,0\} \\
 +
3 & 1 & \{0,0,1,0,0,0,0,0\} & \{0,-1,1,0,0,0,0,0\} \\
 +
4 & 1 & \{0,0,0,1,0,0,0,0\} & \{0,0,-1,1,0,0,0,0\} \\
 +
5 & 1 & \{0,0,0,0,1,0,0,0\} & \{0,0,0,-1,1,0,0,0\} \\
 +
6 & 1 & \{0,0,0,0,0,1,0,0\} & \{0,0,0,0,-1,1,0,0\} \\
 +
7 & 1 & \{0,0,0,0,0,0,1,0\} & \{0,0,0,0,0,-1,1,0\} \\
 +
8 & 1 & \{0,0,0,0,0,0,0,1\} & \{1,1,0,0,0,0,0,0\} \\
 +
9 & 2 & \{0,0,1,0,0,0,0,1\} & \{1,0,1,0,0,0,0,0\} \\
 +
10 & 2 & \{0,0,0,0,0,1,1,0\} & \{0,0,0,0,-1,0,1,0\} \\
 +
11 & 2 & \{0,0,0,0,1,1,0,0\} & \{0,0,0,-1,0,1,0,0\} \\
 +
12 & 2 & \{0,0,0,1,1,0,0,0\} & \{0,0,-1,0,1,0,0,0\} \\
 +
13 & 2 & \{0,0,1,1,0,0,0,0\} & \{0,-1,0,1,0,0,0,0\} \\
 +
14 & 2 & \{1,1,0,0,0,0,0,0\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
15 & 2 & \{0,1,1,0,0,0,0,0\} & \{-1,0,1,0,0,0,0,0\} \\
 +
16 & 3 & \{0,0,1,1,0,0,0,1\} & \{1,0,0,1,0,0,0,0\} \\
 +
17 & 3 & \{0,1,1,0,0,0,0,1\} & \{0,1,1,0,0,0,0,0\} \\
 +
18 & 3 & \{0,0,0,0,1,1,1,0\} & \{0,0,0,-1,0,0,1,0\} \\
 +
19 & 3 & \{0,0,0,1,1,1,0,0\} & \{0,0,-1,0,0,1,0,0\} \\
 +
20 & 3 & \{0,0,1,1,1,0,0,0\} & \{0,-1,0,0,1,0,0,0\} \\
 +
21 & 3 & \{1,1,1,0,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
22 & 3 & \{0,1,1,1,0,0,0,0\} & \{-1,0,0,1,0,0,0,0\} \\
 +
23 & 4 & \{0,0,1,1,1,0,0,1\} & \{1,0,0,0,1,0,0,0\} \\
 +
24 & 4 & \{1,1,1,0,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
25 & 4 & \{0,1,1,1,0,0,0,1\} & \{0,1,0,1,0,0,0,0\} \\
 +
26 & 4 & \{0,0,0,1,1,1,1,0\} & \{0,0,-1,0,0,0,1,0\} \\
 +
27 & 4 & \{0,0,1,1,1,1,0,0\} & \{0,-1,0,0,0,1,0,0\} \\
 +
28 & 4 & \{1,1,1,1,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
29 & 4 & \{0,1,1,1,1,0,0,0\} & \{-1,0,0,0,1,0,0,0\} \\
 +
30 & 5 & \{0,0,1,1,1,1,0,1\} & \{1,0,0,0,0,1,0,0\} \\
 +
31 & 5 & \{1,1,1,1,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
32 & 5 & \{0,1,1,1,1,0,0,1\} & \{0,1,0,0,1,0,0,0\} \\
 +
33 & 5 & \{0,1,2,1,0,0,0,1\} & \{0,0,1,1,0,0,0,0\} \\
 +
34 & 5 & \{0,0,1,1,1,1,1,0\} & \{0,-1,0,0,0,0,1,0\} \\
 +
35 & 5 & \{1,1,1,1,1,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
36 & 5 & \{0,1,1,1,1,1,0,0\} & \{-1,0,0,0,0,1,0,0\} \\
 +
37 & 6 & \{0,0,1,1,1,1,1,1\} & \{1,0,0,0,0,0,1,0\} \\
 +
38 & 6 & \{1,1,1,1,1,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
39 & 6 & \{1,1,2,1,0,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
40 & 6 & \{0,1,1,1,1,1,0,1\} & \{0,1,0,0,0,1,0,0\} \\
 +
41 & 6 & \{0,1,2,1,1,0,0,1\} & \{0,0,1,0,1,0,0,0\} \\
 +
42 & 6 & \{1,1,1,1,1,1,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
43 & 6 & \{0,1,1,1,1,1,1,0\} & \{-1,0,0,0,0,0,1,0\} \\
 +
44 & 7 & \{1,1,1,1,1,1,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
45 & 7 & \{1,1,2,1,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
46 & 7 & \{0,1,1,1,1,1,1,1\} & \{0,1,0,0,0,0,1,0\} \\
 +
47 & 7 & \{0,1,2,1,1,1,0,1\} & \{0,0,1,0,0,1,0,0\} \\
 +
48 & 7 & \{0,1,2,2,1,0,0,1\} & \{0,0,0,1,1,0,0,0\} \\
 +
49 & 7 & \{1,2,2,1,0,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
50 & 7 & \{1,1,1,1,1,1,1,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
51 & 8 & \{1,1,1,1,1,1,1,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
52 & 8 & \{1,1,2,1,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
53 & 8 & \{1,1,2,2,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
54 & 8 & \{0,1,2,1,1,1,1,1\} & \{0,0,1,0,0,0,1,0\} \\
 +
55 & 8 & \{0,1,2,2,1,1,0,1\} & \{0,0,0,1,0,1,0,0\} \\
 +
56 & 8 & \{1,2,2,1,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
57 & 9 & \{1,1,2,1,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
58 & 9 & \{1,1,2,2,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
59 & 9 & \{0,1,2,2,1,1,1,1\} & \{0,0,0,1,0,0,1,0\} \\
 +
60 & 9 & \{0,1,2,2,2,1,0,1\} & \{0,0,0,0,1,1,0,0\} \\
 +
61 & 9 & \{1,2,2,1,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
62 & 9 & \{1,2,2,2,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
63 & 10 & \{1,1,2,2,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
64 & 10 & \{1,1,2,2,2,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
65 & 10 & \{0,1,2,2,2,1,1,1\} & \{0,0,0,0,1,0,1,0\} \\
 +
66 & 10 & \{1,2,2,1,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
67 & 10 & \{1,2,2,2,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
68 & 10 & \{1,2,3,2,1,0,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
69 & 11 & \{1,2,3,2,1,0,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
70 & 11 & \{1,1,2,2,2,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
71 & 11 & \{0,1,2,2,2,2,1,1\} & \{0,0,0,0,0,1,1,0\} \\
 +
72 & 11 & \{1,2,2,2,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
73 & 11 & \{1,2,2,2,2,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
74 & 11 & \{1,2,3,2,1,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
75 & 12 & \{1,2,3,2,1,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
76 & 12 & \{1,1,2,2,2,2,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
77 & 12 & \{1,2,2,2,2,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
78 & 12 & \{1,2,3,2,1,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
79 & 12 & \{1,2,3,2,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
80 & 13 & \{1,2,3,2,1,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
81 & 13 & \{1,2,3,2,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
82 & 13 & \{1,2,2,2,2,2,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
83 & 13 & \{1,2,3,2,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
84 & 13 & \{1,2,3,3,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
85 & 14 & \{1,2,3,2,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
86 & 14 & \{1,2,3,3,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
87 & 14 & \{1,2,3,2,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
88 & 14 & \{1,2,3,3,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
89 & 15 & \{1,2,3,2,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
90 & 15 & \{1,2,3,3,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
91 & 15 & \{1,2,4,3,2,1,0,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
92 & 15 & \{1,2,3,3,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
93 & 16 & \{1,2,3,3,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
94 & 16 & \{1,2,4,3,2,1,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
95 & 16 & \{1,3,4,3,2,1,0,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\
 +
96 & 16 & \{1,2,3,3,3,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
97 & 17 & \{1,2,3,3,3,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
98 & 17 & \{1,2,4,3,2,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
99 & 17 & \{2,3,4,3,2,1,0,2\} & \{0,0,0,0,0,0,-1,1\} \\
 +
100 & 17 & \{1,3,4,3,2,1,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
101 & 18 & \{1,2,4,3,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
102 & 18 & \{2,3,4,3,2,1,1,2\} & \{0,0,0,0,0,-1,0,1\} \\
 +
103 & 18 & \{1,3,4,3,2,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
104 & 19 & \{1,2,4,4,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
105 & 19 & \{2,3,4,3,2,2,1,2\} & \{0,0,0,0,-1,0,0,1\} \\
 +
106 & 19 & \{1,3,4,3,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
107 & 20 & \{2,3,4,3,3,2,1,2\} & \{0,0,0,-1,0,0,0,1\} \\
 +
108 & 20 & \{1,3,4,4,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
109 & 21 & \{2,3,4,4,3,2,1,2\} & \{0,0,-1,0,0,0,0,1\} \\
 +
110 & 21 & \{1,3,5,4,3,2,1,2\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
111 & 22 & \{1,3,5,4,3,2,1,3\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\
 +
112 & 22 & \{2,3,5,4,3,2,1,2\} & \{0,-1,0,0,0,0,0,1\} \\
 +
113 & 23 & \{2,3,5,4,3,2,1,3\} & \{1,0,0,0,0,0,0,1\} \\
 +
114 & 23 & \{2,4,5,4,3,2,1,2\} & \{-1,0,0,0,0,0,0,1\} \\
 +
115 & 24 & \{2,4,5,4,3,2,1,3\} & \{0,1,0,0,0,0,0,1\} \\
 +
116 & 25 & \{2,4,6,4,3,2,1,3\} & \{0,0,1,0,0,0,0,1\} \\
 +
117 & 26 & \{2,4,6,5,3,2,1,3\} & \{0,0,0,1,0,0,0,1\} \\
 +
118 & 27 & \{2,4,6,5,4,2,1,3\} & \{0,0,0,0,1,0,0,1\} \\
 +
119 & 28 & \{2,4,6,5,4,3,1,3\} & \{0,0,0,0,0,1,0,1\} \\
 +
120 & 29 & \{2,4,6,5,4,3,2,3\} & \{0,0,0,0,0,0,1,1\}
 +
\end{array}
 +
</math>
  
 
+
  
 
==메모==
 
==메모==
41번째 줄: 170번째 줄:
 
* 정이십면체와 E8 (via Mckay correspondence)
 
* 정이십면체와 E8 (via Mckay correspondence)
  
 
+
 +
 
 +
 
 +
==관련된 항목들==
 +
* [[Kissing number and sphere packings]]
 +
* [[E8 격자]]
  
 
 
  
==관련된 학부 과목과 미리 알고 있으면 좋은 것들==
+
===관련된 학부 과목과 미리 알고 있으면 좋은 것들===
  
 
* [[선형대수학]]
 
* [[선형대수학]]
  
 
+
 
 
==관련된 대학원 과목==
 
  
 +
===관련된 대학원 과목===
 
* [[이차형식]]
 
* [[이차형식]]
* [[search?q=%EB%A6%AC%EB%8C%80%EC%88%98&parent id=2570648|리대수]]
+
* [[리군과 리대수]]
 
+
* [[리대수 g2의 유한차원 표현론]]
 
 
 
 
==관련된 항목들==
 
 
 
* [[Kissing number and sphere packings]]
 
  
 
 
  
 
+
==계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxZFZVdFFrMkJDWHc/edit
  
==위키링크==
+
  
 +
==사전 형태의 자료==
 
* http://en.wikipedia.org/wiki/E8
 
* http://en.wikipedia.org/wiki/E8
  
 
 
  
 
 
  
 
+
  
==참고할만한 자료==
+
==메모==
 
+
* [http://www.madore.org/~david/math/e8w.html The E8 root system]
*  Borcherds' lectures on Lie groups from [http://math.berkeley.edu/%7Eanton/index.php?m1=writings Anton's webpage][http://bomber0.springnote.com/pages/1924972/attachments/857036 ]<br>
+
*  Borcherds' lectures on Lie groups from [http://math.berkeley.edu/%7Eanton/index.php?m1=writings Anton's webpage][http://bomber0.springnote.com[파일:1924972-]]
 
** [[2570648/attachments/1120778|Borcherds_on_LieGroups.pdf]]
 
** [[2570648/attachments/1120778|Borcherds_on_LieGroups.pdf]]
 
+
*  Bertram Kostant (Baez's webpage)[http://math.ucr.edu/home/baez/kostant/ ]
*  Bertram Kostant (Baez's webpage)[http://math.ucr.edu/home/baez/kostant/ ]<br>
 
 
** [http://math.ucr.edu/home/baez/kostant/ On Some Mathematics in Garrett Lisi's 'E8 Theory of Everything']
 
** [http://math.ucr.edu/home/baez/kostant/ On Some Mathematics in Garrett Lisi's 'E8 Theory of Everything']
 
+
*  John Baez
*  John Baez<br>
 
 
** [http://math.ucr.edu/home/baez/numbers/ My Favorite Numbers] : [http://math.ucr.edu/home/baez/numbers/5.pdf 5], [http://math.ucr.edu/home/baez/numbers/8.pdf%20 8], and [http://math.ucr.edu/home/baez/numbers/24.pdf 24]
 
** [http://math.ucr.edu/home/baez/numbers/ My Favorite Numbers] : [http://math.ucr.edu/home/baez/numbers/5.pdf 5], [http://math.ucr.edu/home/baez/numbers/8.pdf%20 8], and [http://math.ucr.edu/home/baez/numbers/24.pdf 24]
  
* [http://bomber0.byus.net/ 피타고라스의 창]<br>
+
==리뷰, 에세이, 강의노트==
 +
* [http://bomber0.byus.net/ 피타고라스의 창]
 
** [http://bomber0.byus.net/index.php/2008/08/01/702 E8이란 무엇인가 (1) : 들어가며]
 
** [http://bomber0.byus.net/index.php/2008/08/01/702 E8이란 무엇인가 (1) : 들어가며]
 
** [http://bomber0.byus.net/index.php/2008/08/02/703 E8이란 무엇인가 (2) : 8차원에서 내려온 그림자]
 
** [http://bomber0.byus.net/index.php/2008/08/02/703 E8이란 무엇인가 (2) : 8차원에서 내려온 그림자]
 
** [http://bomber0.byus.net/index.php/2008/08/03/704 E8이란 무엇인가 (3) : 8차원의 눈꽃송이]
 
** [http://bomber0.byus.net/index.php/2008/08/03/704 E8이란 무엇인가 (3) : 8차원의 눈꽃송이]
 
** [http://bomber0.byus.net/index.php/2008/08/05/705 E8이란 무엇인가 (번외편) - E8과 모뎀]
 
** [http://bomber0.byus.net/index.php/2008/08/05/705 E8이란 무엇인가 (번외편) - E8과 모뎀]
 +
 +
 +
==관련논문==
 +
* Dechant, Pierre-Philippe. “The Birth of <math>E_8</math> out of the Spinors of the Icosahedron.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 472, no. 2185 (January 2016): 20150504. doi:10.1098/rspa.2015.0504.
 +
 +
[[분류:리군과 리대수]]
 +
[[분류:목록]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q298759 Q298759]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': 'e8'}]

2021년 2월 17일 (수) 04:47 기준 최신판

개요

  • 다양한 수학적 대상이 E8 이라는 이름으로 불린다
    • 루트 시스템으로서의 E8
    • 정수 계수 이차형식으로서의 E8
    • 단순리대수로서의 E8
    • 단순리군으로서의 E8


딘킨 다이어그램

2570648-389px-Dynkin diagram E8.svg.png

E81.png


카르탄 행렬 \[ \left( \begin{array}{cccccccc} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \\ \end{array} \right) \]


루트 시스템

  • 240개의 8차원 벡터로 구성
  • 테이블

\[ \begin{array}{c|c|c|c} \text{} & \text{height} & \text{label} & \text{coordinate} \\ \hline 1 & 1 & \{1,0,0,0,0,0,0,0\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 2 & 1 & \{0,1,0,0,0,0,0,0\} & \{-1,1,0,0,0,0,0,0\} \\ 3 & 1 & \{0,0,1,0,0,0,0,0\} & \{0,-1,1,0,0,0,0,0\} \\ 4 & 1 & \{0,0,0,1,0,0,0,0\} & \{0,0,-1,1,0,0,0,0\} \\ 5 & 1 & \{0,0,0,0,1,0,0,0\} & \{0,0,0,-1,1,0,0,0\} \\ 6 & 1 & \{0,0,0,0,0,1,0,0\} & \{0,0,0,0,-1,1,0,0\} \\ 7 & 1 & \{0,0,0,0,0,0,1,0\} & \{0,0,0,0,0,-1,1,0\} \\ 8 & 1 & \{0,0,0,0,0,0,0,1\} & \{1,1,0,0,0,0,0,0\} \\ 9 & 2 & \{0,0,1,0,0,0,0,1\} & \{1,0,1,0,0,0,0,0\} \\ 10 & 2 & \{0,0,0,0,0,1,1,0\} & \{0,0,0,0,-1,0,1,0\} \\ 11 & 2 & \{0,0,0,0,1,1,0,0\} & \{0,0,0,-1,0,1,0,0\} \\ 12 & 2 & \{0,0,0,1,1,0,0,0\} & \{0,0,-1,0,1,0,0,0\} \\ 13 & 2 & \{0,0,1,1,0,0,0,0\} & \{0,-1,0,1,0,0,0,0\} \\ 14 & 2 & \{1,1,0,0,0,0,0,0\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 15 & 2 & \{0,1,1,0,0,0,0,0\} & \{-1,0,1,0,0,0,0,0\} \\ 16 & 3 & \{0,0,1,1,0,0,0,1\} & \{1,0,0,1,0,0,0,0\} \\ 17 & 3 & \{0,1,1,0,0,0,0,1\} & \{0,1,1,0,0,0,0,0\} \\ 18 & 3 & \{0,0,0,0,1,1,1,0\} & \{0,0,0,-1,0,0,1,0\} \\ 19 & 3 & \{0,0,0,1,1,1,0,0\} & \{0,0,-1,0,0,1,0,0\} \\ 20 & 3 & \{0,0,1,1,1,0,0,0\} & \{0,-1,0,0,1,0,0,0\} \\ 21 & 3 & \{1,1,1,0,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 22 & 3 & \{0,1,1,1,0,0,0,0\} & \{-1,0,0,1,0,0,0,0\} \\ 23 & 4 & \{0,0,1,1,1,0,0,1\} & \{1,0,0,0,1,0,0,0\} \\ 24 & 4 & \{1,1,1,0,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 25 & 4 & \{0,1,1,1,0,0,0,1\} & \{0,1,0,1,0,0,0,0\} \\ 26 & 4 & \{0,0,0,1,1,1,1,0\} & \{0,0,-1,0,0,0,1,0\} \\ 27 & 4 & \{0,0,1,1,1,1,0,0\} & \{0,-1,0,0,0,1,0,0\} \\ 28 & 4 & \{1,1,1,1,0,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 29 & 4 & \{0,1,1,1,1,0,0,0\} & \{-1,0,0,0,1,0,0,0\} \\ 30 & 5 & \{0,0,1,1,1,1,0,1\} & \{1,0,0,0,0,1,0,0\} \\ 31 & 5 & \{1,1,1,1,0,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 32 & 5 & \{0,1,1,1,1,0,0,1\} & \{0,1,0,0,1,0,0,0\} \\ 33 & 5 & \{0,1,2,1,0,0,0,1\} & \{0,0,1,1,0,0,0,0\} \\ 34 & 5 & \{0,0,1,1,1,1,1,0\} & \{0,-1,0,0,0,0,1,0\} \\ 35 & 5 & \{1,1,1,1,1,0,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 36 & 5 & \{0,1,1,1,1,1,0,0\} & \{-1,0,0,0,0,1,0,0\} \\ 37 & 6 & \{0,0,1,1,1,1,1,1\} & \{1,0,0,0,0,0,1,0\} \\ 38 & 6 & \{1,1,1,1,1,0,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 39 & 6 & \{1,1,2,1,0,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 40 & 6 & \{0,1,1,1,1,1,0,1\} & \{0,1,0,0,0,1,0,0\} \\ 41 & 6 & \{0,1,2,1,1,0,0,1\} & \{0,0,1,0,1,0,0,0\} \\ 42 & 6 & \{1,1,1,1,1,1,0,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 43 & 6 & \{0,1,1,1,1,1,1,0\} & \{-1,0,0,0,0,0,1,0\} \\ 44 & 7 & \{1,1,1,1,1,1,0,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 45 & 7 & \{1,1,2,1,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 46 & 7 & \{0,1,1,1,1,1,1,1\} & \{0,1,0,0,0,0,1,0\} \\ 47 & 7 & \{0,1,2,1,1,1,0,1\} & \{0,0,1,0,0,1,0,0\} \\ 48 & 7 & \{0,1,2,2,1,0,0,1\} & \{0,0,0,1,1,0,0,0\} \\ 49 & 7 & \{1,2,2,1,0,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 50 & 7 & \{1,1,1,1,1,1,1,0\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 51 & 8 & \{1,1,1,1,1,1,1,1\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 52 & 8 & \{1,1,2,1,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 53 & 8 & \{1,1,2,2,1,0,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 54 & 8 & \{0,1,2,1,1,1,1,1\} & \{0,0,1,0,0,0,1,0\} \\ 55 & 8 & \{0,1,2,2,1,1,0,1\} & \{0,0,0,1,0,1,0,0\} \\ 56 & 8 & \{1,2,2,1,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 57 & 9 & \{1,1,2,1,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 58 & 9 & \{1,1,2,2,1,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 59 & 9 & \{0,1,2,2,1,1,1,1\} & \{0,0,0,1,0,0,1,0\} \\ 60 & 9 & \{0,1,2,2,2,1,0,1\} & \{0,0,0,0,1,1,0,0\} \\ 61 & 9 & \{1,2,2,1,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 62 & 9 & \{1,2,2,2,1,0,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 63 & 10 & \{1,1,2,2,1,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 64 & 10 & \{1,1,2,2,2,1,0,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 65 & 10 & \{0,1,2,2,2,1,1,1\} & \{0,0,0,0,1,0,1,0\} \\ 66 & 10 & \{1,2,2,1,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 67 & 10 & \{1,2,2,2,1,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 68 & 10 & \{1,2,3,2,1,0,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 69 & 11 & \{1,2,3,2,1,0,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 70 & 11 & \{1,1,2,2,2,1,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 71 & 11 & \{0,1,2,2,2,2,1,1\} & \{0,0,0,0,0,1,1,0\} \\ 72 & 11 & \{1,2,2,2,1,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 73 & 11 & \{1,2,2,2,2,1,0,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 74 & 11 & \{1,2,3,2,1,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 75 & 12 & \{1,2,3,2,1,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 76 & 12 & \{1,1,2,2,2,2,1,1\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 77 & 12 & \{1,2,2,2,2,1,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 78 & 12 & \{1,2,3,2,1,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 79 & 12 & \{1,2,3,2,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 80 & 13 & \{1,2,3,2,1,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 81 & 13 & \{1,2,3,2,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 82 & 13 & \{1,2,2,2,2,2,1,1\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 83 & 13 & \{1,2,3,2,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 84 & 13 & \{1,2,3,3,2,1,0,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 85 & 14 & \{1,2,3,2,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 86 & 14 & \{1,2,3,3,2,1,0,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 87 & 14 & \{1,2,3,2,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 88 & 14 & \{1,2,3,3,2,1,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 89 & 15 & \{1,2,3,2,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 90 & 15 & \{1,2,3,3,2,1,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 91 & 15 & \{1,2,4,3,2,1,0,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 92 & 15 & \{1,2,3,3,2,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 93 & 16 & \{1,2,3,3,2,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 94 & 16 & \{1,2,4,3,2,1,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 95 & 16 & \{1,3,4,3,2,1,0,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right\} \\ 96 & 16 & \{1,2,3,3,3,2,1,1\} & \left\{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 97 & 17 & \{1,2,3,3,3,2,1,2\} & \left\{\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 98 & 17 & \{1,2,4,3,2,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 99 & 17 & \{2,3,4,3,2,1,0,2\} & \{0,0,0,0,0,0,-1,1\} \\ 100 & 17 & \{1,3,4,3,2,1,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 101 & 18 & \{1,2,4,3,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 102 & 18 & \{2,3,4,3,2,1,1,2\} & \{0,0,0,0,0,-1,0,1\} \\ 103 & 18 & \{1,3,4,3,2,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 104 & 19 & \{1,2,4,4,3,2,1,2\} & \left\{\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 105 & 19 & \{2,3,4,3,2,2,1,2\} & \{0,0,0,0,-1,0,0,1\} \\ 106 & 19 & \{1,3,4,3,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 107 & 20 & \{2,3,4,3,3,2,1,2\} & \{0,0,0,-1,0,0,0,1\} \\ 108 & 20 & \{1,3,4,4,3,2,1,2\} & \left\{-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 109 & 21 & \{2,3,4,4,3,2,1,2\} & \{0,0,-1,0,0,0,0,1\} \\ 110 & 21 & \{1,3,5,4,3,2,1,2\} & \left\{-\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 111 & 22 & \{1,3,5,4,3,2,1,3\} & \left\{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\} \\ 112 & 22 & \{2,3,5,4,3,2,1,2\} & \{0,-1,0,0,0,0,0,1\} \\ 113 & 23 & \{2,3,5,4,3,2,1,3\} & \{1,0,0,0,0,0,0,1\} \\ 114 & 23 & \{2,4,5,4,3,2,1,2\} & \{-1,0,0,0,0,0,0,1\} \\ 115 & 24 & \{2,4,5,4,3,2,1,3\} & \{0,1,0,0,0,0,0,1\} \\ 116 & 25 & \{2,4,6,4,3,2,1,3\} & \{0,0,1,0,0,0,0,1\} \\ 117 & 26 & \{2,4,6,5,3,2,1,3\} & \{0,0,0,1,0,0,0,1\} \\ 118 & 27 & \{2,4,6,5,4,2,1,3\} & \{0,0,0,0,1,0,0,1\} \\ 119 & 28 & \{2,4,6,5,4,3,1,3\} & \{0,0,0,0,0,1,0,1\} \\ 120 & 29 & \{2,4,6,5,4,3,2,3\} & \{0,0,0,0,0,0,1,1\} \end{array} \]


메모

  • 정이십면체와 E8 (via Mckay correspondence)



관련된 항목들


관련된 학부 과목과 미리 알고 있으면 좋은 것들


관련된 대학원 과목


계산 리소스


사전 형태의 자료



메모

리뷰, 에세이, 강의노트


관련논문

  • Dechant, Pierre-Philippe. “The Birth of \(E_8\) out of the Spinors of the Icosahedron.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 472, no. 2185 (January 2016): 20150504. doi:10.1098/rspa.2015.0504.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'e8'}]