"추상대수학"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
|||
(사용자 2명의 중간 판 17개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | |||
* 현대대수학의 기본적인 언어이자 대상인, 군, 환, 체의 기본적인 용어 및 이론을 공부함. | * 현대대수학의 기본적인 언어이자 대상인, 군, 환, 체의 기본적인 용어 및 이론을 공부함. | ||
* 갈루아 이론 - 군론을 통해 확장체 혹은 대수방정식의 해가 가진 대칭성을 들여다 봄. | * 갈루아 이론 - 군론을 통해 확장체 혹은 대수방정식의 해가 가진 대칭성을 들여다 봄. | ||
− | + | ||
− | + | ==선수 과목 또는 알고 있으면 좋은 것들== | |
− | * 고교 수준의 대수학 | + | * 고교 수준의 대수학 |
** 다항식, 다항방정식 | ** 다항식, 다항방정식 | ||
− | * 기초적인 선형대수학 | + | * 기초적인 선형대수학 |
− | ** 기저, 차원, 선형사상, 행렬, 행렬식 | + | ** 기저, 차원, 선형사상, 행렬, 행렬식 |
− | |||
− | * 군(group) | + | ==다루는 대상== |
+ | |||
+ | * 군(group) | ||
** 대칭성을 기술하는 언어 | ** 대칭성을 기술하는 언어 | ||
** 항등원, 역원, | ** 항등원, 역원, | ||
− | * 환(ring) | + | * 환(ring) |
** 덧셈, 뺄셈, 곱하기가 가능하며, 덧셈과 곱셈 사이에 분배법칙이 성립. | ** 덧셈, 뺄셈, 곱하기가 가능하며, 덧셈과 곱셈 사이에 분배법칙이 성립. | ||
** 정수의 집합, 다항식의 집합, n x n 행렬들의 집합 | ** 정수의 집합, 다항식의 집합, n x n 행렬들의 집합 | ||
− | * 체(field) | + | * 체(field) |
** 실수, 복소수와 같이 사칙연산이 가능. | ** 실수, 복소수와 같이 사칙연산이 가능. | ||
− | ** 좀더 일반적으로 곱셈의 교환법칙을 가정하지 않는 경우는 division ring이라 부름. | + | ** 좀더 일반적으로 곱셈의 교환법칙을 가정하지 않는 경우는 division ring이라 부름. |
+ | |||
− | + | ==중요한 개념 및 정리== | |
− | * 유한생성 아벨군의 기본정리 | + | * [[순환군]] |
+ | * [[군론(group theory)|군론]] | ||
+ | * [[유한생성 아벨군의 기본정리]] | ||
+ | * [[#|체론(field theory)]] | ||
* ideal | * ideal | ||
* 유한체 | * 유한체 | ||
* 갈루아 체확장 | * 갈루아 체확장 | ||
− | + | ||
− | + | ==유명한 정리 혹은 생각할만한 문제== | |
* [[대수학의 기본정리]](The fundamental theorem of algebras)의 대수적 증명은 가능한가? | * [[대수학의 기본정리]](The fundamental theorem of algebras)의 대수적 증명은 가능한가? | ||
− | * | + | * [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] |
− | ** 아래 참고할만한 자료 | + | ** 아래 참고할만한 자료 |
*** [http://www.jstor.org/stable/2315349 The Impossibility of a Division Algebra of Vectors in Three Dimensional Space] | *** [http://www.jstor.org/stable/2315349 The Impossibility of a Division Algebra of Vectors in Three Dimensional Space] | ||
− | *** [http://www.jstor.org/stable/2689449 Hamilton's Discovery of Quaternions] | + | *** [http://www.jstor.org/stable/2689449 Hamilton's Discovery of Quaternions] |
* [[가우스와 정17각형의 작도]] | * [[가우스와 정17각형의 작도]] | ||
− | * 3대 작도 | + | * [[그리스 3대 작도 불가능문제]]를 군론을 통해 해결할 수 있음. |
− | * 5차 이상의 | + | * [[5차방정식과 근의 공식|일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명]] |
− | * 유클리드 도메인이 아닌 PID | + | * 유클리드 도메인이 아닌 PID |
− | ** 아래 참고할만한 자료 | + | ** 아래 참고할만한 자료 |
*** [http://www.jstor.org/stable/2322908 A Principal Ideal Domain That Is Not a Euclidean Domain] | *** [http://www.jstor.org/stable/2322908 A Principal Ideal Domain That Is Not a Euclidean Domain] | ||
+ | * [[7개의 프리즈 패턴]] | ||
* [[17 Plane Crystallographic groups]] | * [[17 Plane Crystallographic groups]] | ||
− | + | ||
− | + | ==다른 과목과의 관련성== | |
* [[초등정수론|정수론]] | * [[초등정수론|정수론]] | ||
* [[선형대수학]] | * [[선형대수학]] | ||
− | * [[리만곡면론|대수곡선론]] | + | * [[리만곡면론|대수곡선론]] |
** 대수기하학 입문으로서의 대수곡선론 | ** 대수기하학 입문으로서의 대수곡선론 | ||
− | * [[대수적위상수학]] | + | * [[대수적위상수학]] |
− | ** 군론 | + | ** 군론 |
*** fundamental group을 정의하기 위해 필요 | *** fundamental group을 정의하기 위해 필요 | ||
*** covering space의 deck transformation group | *** covering space의 deck transformation group | ||
− | ** 유한생성 아벨군의 기본정리 | + | ** 유한생성 아벨군의 기본정리 |
*** 호몰로지를 이해하기 위해 필요 | *** 호몰로지를 이해하기 위해 필요 | ||
+ | * 조합론 | ||
+ | ** 번사이드 보조정리 | ||
+ | |||
+ | |||
− | + | ||
− | + | ==관련된 대학원 과목 또는 더 공부하면 좋은 것들== | |
* 펠릭스 클라인의 '정이십면체와 5차방정식' | * 펠릭스 클라인의 '정이십면체와 5차방정식' | ||
− | * semisimple rings | + | * semisimple rings |
− | ** Artin–Wedderburn theorem | + | ** [[아틴-웨더번 정리(Artin–Wedderburn theorem)]] |
* 유한군의 표현론 | * 유한군의 표현론 | ||
* [[대수적수론|대수적정수론]] | * [[대수적수론|대수적정수론]] | ||
* [[Classical groups]] | * [[Classical groups]] | ||
− | |||
− | + | ==매스매티카 파일 및 계산 리소스== | |
+ | * http://homepage.math.uiowa.edu/~goodman/22m121.dir/2006/22m121.html | ||
+ | |||
+ | |||
+ | ==표준적인 교과서== | ||
+ | |||
+ | * John B. Fraleigh [http://www.amazon.com/First-Course-Abstract-Algebra-7th/dp/0201763907 A First Course in Abstract Algebra] | ||
+ | |||
+ | |||
+ | ==관련도서== | ||
+ | |||
+ | * Israel Kleiner [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra] | ||
+ | |||
+ | |||
− | + | ==관련논문== | |
− | |||
− | < | + | * I. G. Bashmakova and A. N. Rudakov [http://www.jstor.org/stable/2975015 The Evolution of Algebra 1800-1870] , <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 3 (Mar., 1995), pp. 266-270 |
+ | * [http://www.jstor.org/stable/2690312 The Evolution of Group Theory: A Brief Survey] | ||
+ | ** Israel Kleiner, <cite>Mathematics Magazine</cite>, Vol. 59, No. 4 (Oct., 1986), pp. 195-215 | ||
+ | * [http://www.jstor.org/stable/2690624 A History of Lagrange's Theorem on Groups] | ||
+ | ** Richard L. Roth, <cite>Mathematics Magazine</cite>, Vol. 74, No. 2 (Apr., 2001), pp. 99-108 | ||
+ | * [http://www.jstor.org/stable/2689449 Hamilton's Discovery of Quaternions] | ||
+ | ** B. L. van der Waerden, <cite>Mathematics Magazine</cite>, Vol. 49, No. 5 (Nov., 1976), pp. 227-234 | ||
+ | * [http://www.jstor.org/stable/2974935 The Genesis of the Abstract Ring Concept] | ||
+ | ** Israel Kleiner, <cite>The American Mathematical Monthly</cite>, Vol. 103, No. 5 (May, 1996), pp. 417-424 | ||
+ | * [http://www.jstor.org/stable/2691011 A Historically Focused Course in Abstract Algebra] | ||
+ | ** Israel Kleiner, <cite>Mathematics Magazine</cite>, Vol. 71, No. 2 (Apr., 1998), pp. 105-111 | ||
+ | * [http://www.jstor.org/stable/2325119 Galois Theory for Beginners] | ||
+ | ** John Stillwell, <cite>The American Mathematical Monthly</cite>, Vol. 101, No. 1 (Jan., 1994), pp. 22-27 | ||
+ | * [http://www.jstor.org/stable/2974763 Niels Hendrik Abel and Equations of the Fifth Degree] | ||
+ | ** Michael I. Rosen, <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 6 (Jun. - Jul., 1995), pp. 495-505 | ||
+ | * [http://www.jstor.org/stable/2322908 A Principal Ideal Domain That Is Not a Euclidean Domain] | ||
+ | ** Oscar A. Campoli, <cite>The American Mathematical Monthly</cite>, Vol. 95, No. 9 (Nov., 1988), pp. 868-871 | ||
+ | * [http://www.jstor.org/stable/2974984 Principal Ideal Domains are Almost Euclidean] | ||
+ | ** John Greene, <cite>The American Mathematical Monthly</cite>, Vol. 104, No. 2 (Feb., 1997), pp. 154-156 | ||
+ | [[분류:교과목]] | ||
+ | [[분류:추상대수학]] | ||
− | + | == 노트 == | |
− | |||
− | + | ===위키데이터=== | |
+ | * ID : [https://www.wikidata.org/wiki/Q159943 Q159943] | ||
+ | ===말뭉치=== | ||
+ | # Theory and Applications is an open source textbook designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner.<ref name="ref_32c6abca">[http://abstract.ups.edu/ Abstract Algebra: Theory and Applications (A Free Textbook)]</ref> | ||
+ | # Five of them will be taking college courses in differential equations, abstract algebra and discrete mathematics as 10th-graders at Pasadena High School this fall.<ref name="ref_cfa4eaf5">[https://www.merriam-webster.com/dictionary/abstract%20algebra Definition of Abstract Algebra by Merriam-Webster]</ref> | ||
+ | # At the height of her mathematical powers, doing new work on abstract algebra, Noether died after an operation on an ovarian cyst.<ref name="ref_cfa4eaf5" /> | ||
+ | # If the operations satisfy familiar arithmetic rules (such as associativity, commutativity, and distributivity) the set will have a particularly “rich” algebraic structure.<ref name="ref_fd0599a4">[https://www.britannica.com/science/modern-algebra Modern algebra | mathematics]</ref> | ||
+ | # Sets with the richest algebraic structure are known as fields.<ref name="ref_fd0599a4" /> | ||
+ | # In fact, finite fields motivated the early development of abstract algebra.<ref name="ref_fd0599a4" /> | ||
+ | # Abstract algebra is the set of advanced topics of algebra that deal with abstract algebraic structures rather than the usual number systems.<ref name="ref_53cb43d7">[https://mathworld.wolfram.com/AbstractAlgebra.html Abstract Algebra -- from Wolfram MathWorld]</ref> | ||
+ | # discrete mathematics are sometimes considered branches of abstract algebra.<ref name="ref_53cb43d7" /> | ||
+ | # In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures.<ref name="ref_f9c755ac">[https://en.wikipedia.org/wiki/Abstract_algebra Abstract algebra]</ref> | ||
+ | # Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras.<ref name="ref_f9c755ac" /> | ||
+ | # Algebraic structures, with their associated homomorphisms, form mathematical categories.<ref name="ref_f9c755ac" /> | ||
+ | # As in other parts of mathematics, concrete problems and examples have played important roles in the development of abstract algebra.<ref name="ref_f9c755ac" /> | ||
+ | # But the richness of abstract algebra comes from the idea that you can use abstractions of a concept that are easy to understand to explain more complex behavior!<ref name="ref_9d850f01">[https://math.stackexchange.com/questions/855828/what-is-abstract-algebra-essentially What is Abstract Algebra essentially?]</ref> | ||
+ | # This site contains many of the definitions and theorems from the area of mathematics generally called abstract algebra.<ref name="ref_84fa5ed8">[http://www.math.niu.edu/~beachy/aaol/contents.html ABSTRACT ALGEBRA ON LINE: Contents]</ref> | ||
+ | # It is intended for undergraduate students taking an abstract algebra class at the junior/senior level, as well as for students taking their first graduate algebra course.<ref name="ref_84fa5ed8" /> | ||
+ | # Algebra has also played a significant role in clarifying and highlighting notions of logic, at the core of exact philosophy for millennia.<ref name="ref_6874edf0">[https://plato.stanford.edu/entries/algebra/ Algebra (Stanford Encyclopedia of Philosophy)]</ref> | ||
+ | # A number of branches of mathematics have found algebra such an effective tool that they have spawned algebraic subbranches.<ref name="ref_6874edf0" /> | ||
+ | # Groups, rings and fields only scratch the surface of abstract algebra.<ref name="ref_6874edf0" /> | ||
+ | # Boolean algebras abstract the algebra of sets.<ref name="ref_6874edf0" /> | ||
+ | # "Abstract Algebra" is a clearly written, self-contained basic algebra text for graduate students, with a generous amount of additional material that suggests the scope of contemporary algebra.<ref name="ref_a30cf7c2">[https://www.springer.com/gp/book/9780387715674 Pierre Antoine Grillet]</ref> | ||
+ | # The last chapters, on universal algebras and categories, including tripleability, give valuable general views of algebra.<ref name="ref_a30cf7c2" /> | ||
+ | # This book is on abstract algebra (abstract algebraic systems), an advanced set of topics related to algebra, including groups, rings, ideals, fields, and more.<ref name="ref_cbc73e9b">[https://en.wikibooks.org/wiki/Abstract_Algebra Wikibooks, open books for an open world]</ref> | ||
+ | # Primarily, we will follow Wikibooks' Abstract Algebra textbook.<ref name="ref_7cd593b6">[https://en.wikiversity.org/wiki/Introduction_to_Abstract_Algebra Introduction to Abstract Algebra]</ref> | ||
+ | # A good textbook to pick up is Topics in Algebra by I.N. Herstein.<ref name="ref_7cd593b6" /> | ||
+ | # Shed the societal and cultural narratives holding you back and let step-by-step A First Course in Abstract Algebra textbook solutions reorient your old paradigms.<ref name="ref_17f28728">[https://www.slader.com/textbook/9780201763904-a-first-course-in-abstract-algebra-7th-edition/ Solutions to A First Course in Abstract Algebra (9780201763904) :: Homework Help and Answers :: Slader]</ref> | ||
+ | # Unlock your A First Course in Abstract Algebra PDF (Profound Dynamic Fulfillment) today.<ref name="ref_17f28728" /> | ||
+ | # This course develops in the theme of "Arithmetic congruence, and abstract algebraic structures.<ref name="ref_ceda1da5">[https://math.gatech.edu/courses/math/4107 Georgia Institute of Technology]</ref> | ||
+ | # This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences.<ref name="ref_8424066c">[https://www.degruyter.com/view/title/319702?language=en Abstract Algebra]</ref> | ||
+ | # Abstract Algebra with Applications provides a friendly and concise introduction to algebra, with an emphasis on its uses in the modern world.<ref name="ref_2eef2cc6">[https://www.cambridge.org/core_title/gb/491143 Abstract algebra applications]</ref> | ||
+ | # Perhaps no other subject of undergraduate mathematics is as challenging to learn (and to teach) as abstract algebra.<ref name="ref_2eef2cc6" /> | ||
+ | # Many of the applications of modern algebra are explained in a thoughtful way that will help motivate students to study abstract concepts.<ref name="ref_2eef2cc6" /> | ||
+ | # Abstract Algebra by Dummit & Foote is a standard textbook used by colleges and universities.<ref name="ref_99735e06">[https://www.socratica.com/subject/abstract-algebra Abstract Algebra]</ref> | ||
+ | # It covers all the topics for a solid first course in Abstract Algebra.<ref name="ref_99735e06" /> | ||
+ | # Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication.<ref name="ref_c51bd267">[https://www.worldscientific.com/worldscibooks/10.1142/9853 Abstract Algebra]</ref> | ||
+ | # Noether went into research and more or less invented the field of abstract algebra.<ref name="ref_92aa58b2">[https://cosmosmagazine.com/physics/woman-who-invented-abstract-algebra/ The inventor of abstract algebra]</ref> | ||
+ | # The main aim of the course is to introduce you to basic concepts from abstract algebra, especially the notion of a group.<ref name="ref_eea5599c">[https://www.kcl.ac.uk/study/courses-data/modules/4/Introduction-To-Abstract-Algebra-4ccm121a Introduction To Abstract Algebra]</ref> | ||
+ | # The course will help prepare you for further study in abstract algebra as well as familiarize you with tools essential in many other areas of mathematics.<ref name="ref_eea5599c" /> | ||
+ | # Computational Problems in Abstract Algebra provides information pertinent to the application of computers to abstract algebra.<ref name="ref_213c6e05">[https://www.sciencedirect.com/book/9780080129754/computational-problems-in-abstract-algebra Computational Problems in Abstract Algebra]</ref> | ||
+ | # The final chapter deals with the computational problems related to invariant factors in linear algebra.<ref name="ref_213c6e05" /> | ||
+ | # Mathematicians as well as students of algebra will find this book useful.<ref name="ref_213c6e05" /> | ||
+ | ===소스=== | ||
+ | <references /> | ||
− | + | == 메타데이터 == | |
− | * | + | ===위키데이터=== |
− | + | * ID : [https://www.wikidata.org/wiki/Q159943 Q159943] | |
− | + | ===Spacy 패턴 목록=== | |
− | + | * [{'LOWER': 'abstract'}, {'LEMMA': 'algebra'}] | |
− | + | * [{'LOWER': 'modern'}, {'LEMMA': 'algebra'}] | |
− | + | * [{'LEMMA': 'algebra'}] | |
− | * [ | + | * [{'LEMMA': 'algebraic'}] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | * [ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * [ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * [ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2021년 2월 17일 (수) 05:01 기준 최신판
개요
- 현대대수학의 기본적인 언어이자 대상인, 군, 환, 체의 기본적인 용어 및 이론을 공부함.
- 갈루아 이론 - 군론을 통해 확장체 혹은 대수방정식의 해가 가진 대칭성을 들여다 봄.
선수 과목 또는 알고 있으면 좋은 것들
- 고교 수준의 대수학
- 다항식, 다항방정식
- 기초적인 선형대수학
- 기저, 차원, 선형사상, 행렬, 행렬식
다루는 대상
- 군(group)
- 대칭성을 기술하는 언어
- 항등원, 역원,
- 환(ring)
- 덧셈, 뺄셈, 곱하기가 가능하며, 덧셈과 곱셈 사이에 분배법칙이 성립.
- 정수의 집합, 다항식의 집합, n x n 행렬들의 집합
- 체(field)
- 실수, 복소수와 같이 사칙연산이 가능.
- 좀더 일반적으로 곱셈의 교환법칙을 가정하지 않는 경우는 division ring이라 부름.
중요한 개념 및 정리
- 순환군
- 군론
- 유한생성 아벨군의 기본정리
- 체론(field theory)
- ideal
- 유한체
- 갈루아 체확장
유명한 정리 혹은 생각할만한 문제
- 대수학의 기본정리(The fundamental theorem of algebras)의 대수적 증명은 가능한가?
- 해밀턴의 사원수
- 가우스와 정17각형의 작도
- 그리스 3대 작도 불가능문제를 군론을 통해 해결할 수 있음.
- 일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명
- 유클리드 도메인이 아닌 PID
- 7개의 프리즈 패턴
- 17 Plane Crystallographic groups
다른 과목과의 관련성
- 정수론
- 선형대수학
- 대수곡선론
- 대수기하학 입문으로서의 대수곡선론
- 대수적위상수학
- 군론
- fundamental group을 정의하기 위해 필요
- covering space의 deck transformation group
- 유한생성 아벨군의 기본정리
- 호몰로지를 이해하기 위해 필요
- 군론
- 조합론
- 번사이드 보조정리
관련된 대학원 과목 또는 더 공부하면 좋은 것들
- 펠릭스 클라인의 '정이십면체와 5차방정식'
- semisimple rings
- 유한군의 표현론
- 대수적정수론
- Classical groups
매스매티카 파일 및 계산 리소스
표준적인 교과서
- John B. Fraleigh A First Course in Abstract Algebra
관련도서
- Israel Kleiner A History of Abstract Algebra
관련논문
- I. G. Bashmakova and A. N. Rudakov The Evolution of Algebra 1800-1870 , The American Mathematical Monthly, Vol. 102, No. 3 (Mar., 1995), pp. 266-270
- The Evolution of Group Theory: A Brief Survey
- Israel Kleiner, Mathematics Magazine, Vol. 59, No. 4 (Oct., 1986), pp. 195-215
- A History of Lagrange's Theorem on Groups
- Richard L. Roth, Mathematics Magazine, Vol. 74, No. 2 (Apr., 2001), pp. 99-108
- Hamilton's Discovery of Quaternions
- B. L. van der Waerden, Mathematics Magazine, Vol. 49, No. 5 (Nov., 1976), pp. 227-234
- The Genesis of the Abstract Ring Concept
- Israel Kleiner, The American Mathematical Monthly, Vol. 103, No. 5 (May, 1996), pp. 417-424
- A Historically Focused Course in Abstract Algebra
- Israel Kleiner, Mathematics Magazine, Vol. 71, No. 2 (Apr., 1998), pp. 105-111
- Galois Theory for Beginners
- John Stillwell, The American Mathematical Monthly, Vol. 101, No. 1 (Jan., 1994), pp. 22-27
- Niels Hendrik Abel and Equations of the Fifth Degree
- Michael I. Rosen, The American Mathematical Monthly, Vol. 102, No. 6 (Jun. - Jul., 1995), pp. 495-505
- A Principal Ideal Domain That Is Not a Euclidean Domain
- Oscar A. Campoli, The American Mathematical Monthly, Vol. 95, No. 9 (Nov., 1988), pp. 868-871
- Principal Ideal Domains are Almost Euclidean
- John Greene, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 154-156
노트
위키데이터
- ID : Q159943
말뭉치
- Theory and Applications is an open source textbook designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner.[1]
- Five of them will be taking college courses in differential equations, abstract algebra and discrete mathematics as 10th-graders at Pasadena High School this fall.[2]
- At the height of her mathematical powers, doing new work on abstract algebra, Noether died after an operation on an ovarian cyst.[2]
- If the operations satisfy familiar arithmetic rules (such as associativity, commutativity, and distributivity) the set will have a particularly “rich” algebraic structure.[3]
- Sets with the richest algebraic structure are known as fields.[3]
- In fact, finite fields motivated the early development of abstract algebra.[3]
- Abstract algebra is the set of advanced topics of algebra that deal with abstract algebraic structures rather than the usual number systems.[4]
- discrete mathematics are sometimes considered branches of abstract algebra.[4]
- In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures.[5]
- Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras.[5]
- Algebraic structures, with their associated homomorphisms, form mathematical categories.[5]
- As in other parts of mathematics, concrete problems and examples have played important roles in the development of abstract algebra.[5]
- But the richness of abstract algebra comes from the idea that you can use abstractions of a concept that are easy to understand to explain more complex behavior![6]
- This site contains many of the definitions and theorems from the area of mathematics generally called abstract algebra.[7]
- It is intended for undergraduate students taking an abstract algebra class at the junior/senior level, as well as for students taking their first graduate algebra course.[7]
- Algebra has also played a significant role in clarifying and highlighting notions of logic, at the core of exact philosophy for millennia.[8]
- A number of branches of mathematics have found algebra such an effective tool that they have spawned algebraic subbranches.[8]
- Groups, rings and fields only scratch the surface of abstract algebra.[8]
- Boolean algebras abstract the algebra of sets.[8]
- "Abstract Algebra" is a clearly written, self-contained basic algebra text for graduate students, with a generous amount of additional material that suggests the scope of contemporary algebra.[9]
- The last chapters, on universal algebras and categories, including tripleability, give valuable general views of algebra.[9]
- This book is on abstract algebra (abstract algebraic systems), an advanced set of topics related to algebra, including groups, rings, ideals, fields, and more.[10]
- Primarily, we will follow Wikibooks' Abstract Algebra textbook.[11]
- A good textbook to pick up is Topics in Algebra by I.N. Herstein.[11]
- Shed the societal and cultural narratives holding you back and let step-by-step A First Course in Abstract Algebra textbook solutions reorient your old paradigms.[12]
- Unlock your A First Course in Abstract Algebra PDF (Profound Dynamic Fulfillment) today.[12]
- This course develops in the theme of "Arithmetic congruence, and abstract algebraic structures.[13]
- This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences.[14]
- Abstract Algebra with Applications provides a friendly and concise introduction to algebra, with an emphasis on its uses in the modern world.[15]
- Perhaps no other subject of undergraduate mathematics is as challenging to learn (and to teach) as abstract algebra.[15]
- Many of the applications of modern algebra are explained in a thoughtful way that will help motivate students to study abstract concepts.[15]
- Abstract Algebra by Dummit & Foote is a standard textbook used by colleges and universities.[16]
- It covers all the topics for a solid first course in Abstract Algebra.[16]
- Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication.[17]
- Noether went into research and more or less invented the field of abstract algebra.[18]
- The main aim of the course is to introduce you to basic concepts from abstract algebra, especially the notion of a group.[19]
- The course will help prepare you for further study in abstract algebra as well as familiarize you with tools essential in many other areas of mathematics.[19]
- Computational Problems in Abstract Algebra provides information pertinent to the application of computers to abstract algebra.[20]
- The final chapter deals with the computational problems related to invariant factors in linear algebra.[20]
- Mathematicians as well as students of algebra will find this book useful.[20]
소스
- ↑ Abstract Algebra: Theory and Applications (A Free Textbook)
- ↑ 2.0 2.1 Definition of Abstract Algebra by Merriam-Webster
- ↑ 3.0 3.1 3.2 Modern algebra | mathematics
- ↑ 4.0 4.1 Abstract Algebra -- from Wolfram MathWorld
- ↑ 5.0 5.1 5.2 5.3 Abstract algebra
- ↑ What is Abstract Algebra essentially?
- ↑ 7.0 7.1 ABSTRACT ALGEBRA ON LINE: Contents
- ↑ 8.0 8.1 8.2 8.3 Algebra (Stanford Encyclopedia of Philosophy)
- ↑ 9.0 9.1 Pierre Antoine Grillet
- ↑ Wikibooks, open books for an open world
- ↑ 11.0 11.1 Introduction to Abstract Algebra
- ↑ 12.0 12.1 Solutions to A First Course in Abstract Algebra (9780201763904) :: Homework Help and Answers :: Slader
- ↑ Georgia Institute of Technology
- ↑ Abstract Algebra
- ↑ 15.0 15.1 15.2 Abstract algebra applications
- ↑ 16.0 16.1 Abstract Algebra
- ↑ Abstract Algebra
- ↑ The inventor of abstract algebra
- ↑ 19.0 19.1 Introduction To Abstract Algebra
- ↑ 20.0 20.1 20.2 Computational Problems in Abstract Algebra
메타데이터
위키데이터
- ID : Q159943
Spacy 패턴 목록
- [{'LOWER': 'abstract'}, {'LEMMA': 'algebra'}]
- [{'LOWER': 'modern'}, {'LEMMA': 'algebra'}]
- [{'LEMMA': 'algebra'}]
- [{'LEMMA': 'algebraic'}]