"콕세터 원소(Coxeter element)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 21개는 보이지 않습니다)
6번째 줄: 6번째 줄:
 
* quiver의 표현론 등에서 중요한 역할
 
* quiver의 표현론 등에서 중요한 역할
  
 
+
 
 
 
 
  
 
==정의==
 
==정의==
  
*  유한 콕세터 군이 다음과 같이 주어진 경우:<math>\left\langle r_1,r_2,\ldots,r_n \mid r_1^2=\cdots=r_n^2=(r_ir_j)^{m_{ij}}=1\right\rangle</math><br>
+
*  유한 콕세터 군이 다음과 같이 주어진 경우:<math>\left\langle r_1,r_2,\ldots,r_n \mid r_1^2=\cdots=r_n^2=(r_ir_j)^{m_{ij}}=1\right\rangle</math>
 
* 임의의 치환 <math>\pi\in S_{n}</math> 에 대하여, 콕세터 군의 원소 <math>r_{\pi(1)}r_{\pi(2)}\cdots r_{\pi(n)}</math>를 콕세터 원소라 한다
 
* 임의의 치환 <math>\pi\in S_{n}</math> 에 대하여, 콕세터 군의 원소 <math>r_{\pi(1)}r_{\pi(2)}\cdots r_{\pi(n)}</math>를 콕세터 원소라 한다
  
 
+
 
 
 
 
 
 
==대칭군의 콕세터 원소==
 
  
 +
==예==
 +
===대칭군의 콕세터 원소===
 
* [[대칭군 (symmetric group)]]
 
* [[대칭군 (symmetric group)]]
  
 
+
 
+
===정이면체군의 콕세터 원소===
 
 
 
 
==정이면체군의 콕세터 원소==
 
 
 
 
* [[정이면체군(dihedral group)]]
 
* [[정이면체군(dihedral group)]]
  
 
+
 
 
 
 
  
 
==역사==
 
==역사==
 
+
* 1951년 콕세터
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
* [[수학사 연표]]
 
* [[수학사 연표]]
 
+
 
 
 
 
 
 
  
 
==메모==
 
==메모==
 
+
* Michel Deza, Mark Pankov, Zigzag structure of thin chamber complexes, arXiv:1509.03754[math.CO], September 12 2015, http://arxiv.org/abs/1509.03754v2
 +
* http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=CNO&s1=106428&loc=fromrevtext
 +
* Chapuy, Guillaume, and Christian Stump. “Counting Factorizations of Coxeter Elements into Products of Reflections.” arXiv:1211.2789 [math], November 12, 2012. http://arxiv.org/abs/1211.2789.
 +
* Reiner, Victor, Vivien Ripoll, and Christian Stump. “On Non-Conjugate Coxeter Elements in Well-Generated Reflection Groups.” arXiv:1404.5522 [math], April 22, 2014. http://arxiv.org/abs/1404.5522.
 
* [http://dx.doi.org/10.1016/0021-8693%2889%2990070-7 The spectrum of a Coxeter transformation, affine Coxeter transformations, and the defect map]
 
* [http://dx.doi.org/10.1016/0021-8693%2889%2990070-7 The spectrum of a Coxeter transformation, affine Coxeter transformations, and the defect map]
 
* [http://www.math.lsa.umich.edu/%7Ejrs/coxplane.html http://www.math.lsa.umich.edu/~jrs/coxplane.html]
 
* [http://www.math.lsa.umich.edu/%7Ejrs/coxplane.html http://www.math.lsa.umich.edu/~jrs/coxplane.html]
 
* [http://www-igm.univ-mlv.fr/%7Efpsac/FPSAC07/SITE07/Lecture/July3/Nathan%20Reading.pdf http://www-igm.univ-mlv.fr/~fpsac/FPSAC07/SITE07/Lecture/July3/Nathan%20Reading.pdf]
 
* [http://www-igm.univ-mlv.fr/%7Efpsac/FPSAC07/SITE07/Lecture/July3/Nathan%20Reading.pdf http://www-igm.univ-mlv.fr/~fpsac/FPSAC07/SITE07/Lecture/July3/Nathan%20Reading.pdf]
* Math Overflow http://mathoverflow.net/search?q=
+
* [http://www.matem.unam.mx/jap/articulos/31.pdf Coxeter transformations and the representation theory of algebras]
 
 
 
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]]
 
+
* [[콕세터 평면]]
 
+
* [[바일 벡터]]
 
 
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxRFNnVmZydjVOQms/edit
 +
  
 
+
==사전 형태의 자료==
 
 
==사전 형태의 자료==
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
74번째 줄: 56번째 줄:
  
  
==리뷰논문, 에세이, 강의노트==
+
==리뷰, 에세이, 강의노트==
 
 
 
* Bill Casselman, [http://www.ams.org/notices/201108/201108-about-the-cover.pdf The magical Coxeter transformation] Sep 2011
 
* Bill Casselman, [http://www.ams.org/notices/201108/201108-about-the-cover.pdf The magical Coxeter transformation] Sep 2011
  
 
 
  
 
 
  
 
==관련논문==
 
==관련논문==
 +
* Labbé, Jean-Philippe, and Sébastien Labbé. “A Perron Theorem for Matrices with Negative Entries and Applications to Coxeter Groups.” arXiv:1511.04975 [math], November 16, 2015. http://arxiv.org/abs/1511.04975.
 +
* Damianou, Pantelis A., and Charalampos A. Evripidou. “Characteristic and Coxeter Polynomials for Affine Lie Algebras.” arXiv:1409.3956 [math], September 13, 2014. http://arxiv.org/abs/1409.3956.
 +
* Michel, Jean. 2014. “‘Case-Free’ Derivation for Weyl Groups of the Number of Reflection Factorisations of a Coxeter Element.” arXiv:1408.0721 [math], August. http://arxiv.org/abs/1408.0721.
 +
* Ladkani, Sefi. “On the Periodicity of Coxeter Transformations and the Non-Negativity of Their Euler Forms.” Linear Algebra and Its Applications 428, no. 4 (February 1, 2008): 742–53. doi:10.1016/j.laa.2007.08.002.
 +
* Suter, Ruedi. “Coxeter and Dual Coxeter Numbers.” Communications in Algebra 26, no. 1 (1998): 147–53. doi:10.1080/00927879808826122.
 +
* Berman, S, Y. S Lee, and R. V Moody. “The Spectrum of a Coxeter Transformation, Affine Coxeter Transformations, and the Defect Map.” Journal of Algebra 121, no. 2 (March 1989): 339–57. doi:10.1016/0021-8693(89)90070-7.
 +
* Kostant, Bertram. “The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group.” American Journal of Mathematics 81 (1959): 973–1032.
 +
* Coleman, A. J. “The Betti Numbers of the Simple Lie Groups.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 10 (1958): 349–56.
 +
* The product of the generators of a finite group generated by reflections, HSM Coxeter - Duke Mathematical Journal, 1951
 +
* Coxeter, H. S. M. “Discrete Groups Generated by Reflections.” Annals of Mathematics, Second Series, 35, no. 3 (July 1, 1934): 588–621. doi:10.2307/1968753.
 +
** 602p
 +
[[분류:리군과 리대수]]
  
* The product of the generators of a finite group generated by reflections, HSM Coxeter - Duke Mathematical Journal, 1951
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q5179941 Q5179941]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'coxeter'}, {'LEMMA': 'element'}]

2021년 2월 17일 (수) 05:02 기준 최신판

개요

  • 유한 콕세터 군의 특별한 원소들
  • 하나의 conjugacy class를 이룬다
  • 원소의 order는 Coxeter number가 된다
  • quiver의 표현론 등에서 중요한 역할


정의

  • 유한 콕세터 군이 다음과 같이 주어진 경우\[\left\langle r_1,r_2,\ldots,r_n \mid r_1^2=\cdots=r_n^2=(r_ir_j)^{m_{ij}}=1\right\rangle\]
  • 임의의 치환 \(\pi\in S_{n}\) 에 대하여, 콕세터 군의 원소 \(r_{\pi(1)}r_{\pi(2)}\cdots r_{\pi(n)}\)를 콕세터 원소라 한다


대칭군의 콕세터 원소


정이면체군의 콕세터 원소


역사


메모

관련된 항목들

매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Labbé, Jean-Philippe, and Sébastien Labbé. “A Perron Theorem for Matrices with Negative Entries and Applications to Coxeter Groups.” arXiv:1511.04975 [math], November 16, 2015. http://arxiv.org/abs/1511.04975.
  • Damianou, Pantelis A., and Charalampos A. Evripidou. “Characteristic and Coxeter Polynomials for Affine Lie Algebras.” arXiv:1409.3956 [math], September 13, 2014. http://arxiv.org/abs/1409.3956.
  • Michel, Jean. 2014. “‘Case-Free’ Derivation for Weyl Groups of the Number of Reflection Factorisations of a Coxeter Element.” arXiv:1408.0721 [math], August. http://arxiv.org/abs/1408.0721.
  • Ladkani, Sefi. “On the Periodicity of Coxeter Transformations and the Non-Negativity of Their Euler Forms.” Linear Algebra and Its Applications 428, no. 4 (February 1, 2008): 742–53. doi:10.1016/j.laa.2007.08.002.
  • Suter, Ruedi. “Coxeter and Dual Coxeter Numbers.” Communications in Algebra 26, no. 1 (1998): 147–53. doi:10.1080/00927879808826122.
  • Berman, S, Y. S Lee, and R. V Moody. “The Spectrum of a Coxeter Transformation, Affine Coxeter Transformations, and the Defect Map.” Journal of Algebra 121, no. 2 (March 1989): 339–57. doi:10.1016/0021-8693(89)90070-7.
  • Kostant, Bertram. “The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group.” American Journal of Mathematics 81 (1959): 973–1032.
  • Coleman, A. J. “The Betti Numbers of the Simple Lie Groups.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 10 (1958): 349–56.
  • The product of the generators of a finite group generated by reflections, HSM Coxeter - Duke Mathematical Journal, 1951
  • Coxeter, H. S. M. “Discrete Groups Generated by Reflections.” Annals of Mathematics, Second Series, 35, no. 3 (July 1, 1934): 588–621. doi:10.2307/1968753.
    • 602p

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'coxeter'}, {'LEMMA': 'element'}]