"디리클레 베타함수"의 두 판 사이의 차이
30번째 줄: | 30번째 줄: | ||
유수정리를 사용하자. | 유수정리를 사용하자. | ||
− | 정수 <math>2k+1</math>에 대하여 <math>z\approx 2k+1</math> 이면, <math>\pi/2 \sec \pi z/2 \approx (-1)^{k+1} | + | 정수 <math>2k+1</math>에 대하여 <math>z\approx 2k+1</math> 이면, <math>\pi/2 \sec \pi z/2 \approx \frac{(-1)^{k+1}}{z-(2k+1)}</math> |
<math>\frac{\pi/2\sec(\pi z/2)}{z^{5}}</math>의 정수 <math>2k+1</math>에서의 유수(residue)는 <math>(-1)^{k+1}\frac{1}{(2k+1)^{5}}</math>로 주어진다. | <math>\frac{\pi/2\sec(\pi z/2)}{z^{5}}</math>의 정수 <math>2k+1</math>에서의 유수(residue)는 <math>(-1)^{k+1}\frac{1}{(2k+1)^{5}}</math>로 주어진다. |
2009년 9월 13일 (일) 16:22 판
간단한 소개
- 디리클레 L-함수의 특별한 경우
\(\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}\) - 함수방정식
\(\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})\beta(s)\) 라 두면
\(\Lambda(s)=\Lambda(1-s)\) 를 만족
Special values
- 아래에서 \(E_n\)은 오일러수를 뜻함.
- \(k\geq 0 \) 인 정수일 때,
\(\beta(2k+1)={{{({-1})^k}{E_{2k}}{\pi^{2k+1}} \over {4^{k+1}}(2k!)}}\) - \(k\geq 0 \)인 정수일 때,
\(\beta(-k)={{E_{k}} \over {2}}\)
\(\beta(0)= \frac{1}{2}, \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \beta(3)\;=\;\frac{\pi^3}{32}, \beta(5)\;=\;\frac{5\pi^5}{1536}, \beta(7)\;=\;\frac{61\pi^7}{184320}\)
증명
- 함수방정식으로부터
\(\beta(0)=\frac{1}{2}\)
\(\oint_{C_{R}}\frac{\pi/2\sec(\pi z/2)}{z^{5}}dz\)
\(C_{R}\)는 원점을 중심으로 반지름이 \(R\) 인 원
이때 \(R\)이 커지면, 적분은 0으로 수렴한다.
유수정리를 사용하자.
정수 \(2k+1\)에 대하여 \(z\approx 2k+1\) 이면, \(\pi/2 \sec \pi z/2 \approx \frac{(-1)^{k+1}}{z-(2k+1)}\)
\(\frac{\pi/2\sec(\pi z/2)}{z^{5}}\)의 정수 \(2k+1\)에서의 유수(residue)는 \((-1)^{k+1}\frac{1}{(2k+1)^{5}}\)로 주어진다.
\(\sec x = 1 + \frac {x^2} {2} + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \cdots=\sum_{n=0}^\infty \frac{(-1)^n E_{2n} x^{2n}}{(2n)!}\) 삼각함수와 쌍곡함수의 맥클로린 급수 참조
를 이용하면 0 에서의 유수는 \(\frac{\pi}{2}\times \frac{5}{24}\times \frac{\pi^4}{16}\)임을 알 수 있다.
그러므로 모든 유수의 합은 \(\frac{\pi^5}{768}+2\sum_{k=1}^{\infty}\frac{1}{k^{4}}=0\)
따라서
일반적인 자연수 \(n\) 에 대하여도 마찬가지 방법으로
\(2\zeta(2n)+\frac{(-1)^n 2^{2n}B_{2n}\pi^{2n}}{(2n)!}=0\)
\(\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1\)
을 얻는다.
special values for derivative
\(\beta'(1)\) 의 값
\(\beta(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}\) 와 Hurwitz 제타함수 의 에르미트 표현 \(\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}\) 을 사용하면,
\(\beta'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}\)
\(\beta'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-\beta(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}\)
위의 함수방정식을 사용하자.
Digamma 함수 의 값 \(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)에서 \(\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)\) 를 활용하여,
\(\beta'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\)
를 얻는다.
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dirichlet_beta_function
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=secant
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)