"라마누잔의 class invariants"의 두 판 사이의 차이
8번째 줄: | 8번째 줄: | ||
* 라마누잔이 많은 계산 결과를 남겨놓은 분야<br> | * 라마누잔이 많은 계산 결과를 남겨놓은 분야<br> | ||
+ | |||
+ | <math>G_n:=(2kk')^{-1/12}=2^{-1/4}f(\sqrt{-n})</math> | ||
34번째 줄: | 36번째 줄: | ||
<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math> | <math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math> | ||
+ | |||
+ | [[자코비 세타함수]] | ||
+ | |||
+ | |||
<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math> | <math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math> | ||
+ | |||
+ | <math>k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}</math> | ||
+ | |||
+ | [[모듈라 군, j-invariant and the singular moduli]] | ||
+ | |||
+ | |||
+ | |||
+ | <math>f(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})</math> | ||
+ | |||
+ | <math>f_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})</math> | ||
+ | |||
+ | <math>f_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})</math> | ||
+ | |||
+ | 여기서 <math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})</math> 는 [[데데킨트 에타함수]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
2009년 10월 24일 (토) 13:39 판
이 항목의 스프링노트 원문주소
간단한 소개
- 라마누잔이 많은 계산 결과를 남겨놓은 분야
\(G_n:=(2kk')^{-1/12}=2^{-1/4}f(\sqrt{-n})\)
\(g_n:=(\frac{k'(i\sqrt{n})^2}{2k(i\sqrt{n})})^{1/12}\)
\(g_{58}^2=\frac{\sqrt{29}+5}{2}\)
정의
\(q=e^{2\pi i \tau}\)
\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)
\(\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}\)
\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)
\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)
모듈라 군, j-invariant and the singular moduli
\(f(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)
\(f_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)
\(f_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)
여기서 \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수
하위주제들
재미있는 사실
관련된 다른 주제들
관련도서 및 추천도서
- Ramanujan's Notebooks: V
- Bruce C. Berndt
- 도서내검색
- 도서검색
참고할만한 자료
- Ramanujan's Most Singular Modulus
- Mark B. Villarino, Arxiv, 2003-8
- Ramanujan and the modular j-invariant
- BC Berndt, HH Chan, Canadian Mathematical Bulletin, 1999
- RAMANUJAN–WEBER CLASS INVARIANT Gn AND WATSON'S EMPIRICAL PROCESS
- HH Chan, Journal of the London Mathematical Society, 1998
- Ramanujan's class invariants, Kronecker's limit formula, and modular equations
- BC Berndt, HH Chan, LC Zhang, Transactions of the American Mathematical Society, 1997
- Ramanujan’s class invariants and cubic continued fraction
- BC Berndt, HH Chan, LC Zhang, ACTA ARITHMETICA LXXIII.1 (1995)
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://scholar.google.com/scholar?q=ramanujan%27s+class+invariants&hl=ko&lr=&start=10&sa=N
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=