"라마누잔의 class invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
  
 
*  라마누잔이 많은 계산 결과를 남겨놓은 분야<br>
 
*  라마누잔이 많은 계산 결과를 남겨놓은 분야<br>
*  class field theory에서 중요한 역할을 함<br><math>G_n:=(2kk')^{-1/12}=2^{-1/4}f(\sqrt{-n})</math><br><math>g_n:=(\frac{k'(i\sqrt{n})^2}{2k(i\sqrt{n})})^{1/12}=2^{-1/4}f_1(\sqrt{-n})</math><br>
+
*  class field theory에서 중요한 역할을 함<br><math>G_n:=(2kk')^{-1/12}=2^{-1/4}f(\sqrt{-n})</math><br><math>g_n:=(\frac{k'(\sqrt{-n})^2}{2k(\sqrt{-n})})^{1/12}=2^{-1/4}f_1(\sqrt{-n})</math><br>
  
 
 
 
 
56번째 줄: 56번째 줄:
  
 
* [[라마누잔과 파이]]
 
* [[라마누잔과 파이]]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전형태의 참고자료</h5>
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://scholar.google.com/scholar?q=ramanujan%27s+class+invariants&hl=ko&lr=&start=10&sa=N
 +
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 +
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=<br>
  
 
 
 
 
72번째 줄: 84번째 줄:
 
 
 
 
  
<h5>참고할만한 자료</h5>
+
 
 +
 
 +
<h5>관련논문과 에세이</h5>
  
 
* [http://arxiv1.library.cornell.edu/abs/math/0308028v1 Ramanujan's Most Singular Modulus]<br>
 
* [http://arxiv1.library.cornell.edu/abs/math/0308028v1 Ramanujan's Most Singular Modulus]<br>
81번째 줄: 95번째 줄:
  
 
* [http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=20087 RAMANUJAN–WEBER CLASS INVARIANT Gn AND WATSON'S EMPIRICAL PROCESS]<br>
 
* [http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=20087 RAMANUJAN–WEBER CLASS INVARIANT Gn AND WATSON'S EMPIRICAL PROCESS]<br>
** HH Chan, Journal of the London Mathematical Society, 1998
+
** Heng Huat Chan, Journal of the London Mathematical Society, 1998
 
* [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4015 Ramanujan's Class Invariants With Applications To The Values Of q-Continued Fractions And Theta-Functions]<br>
 
* [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4015 Ramanujan's Class Invariants With Applications To The Values Of q-Continued Fractions And Theta-Functions]<br>
 
** Bruce C. Berndt ,  Heng Huat Chan ,  Liang-Cheng Zhang, 1997
 
** Bruce C. Berndt ,  Heng Huat Chan ,  Liang-Cheng Zhang, 1997
  
 
* [http://www.ams.org/tran/1997-349-06/S0002-9947-97-01738-8/S0002-9947-97-01738-8.pdf Ramanujan's class invariants, Kronecker's limit formula, and modular equations]<br>
 
* [http://www.ams.org/tran/1997-349-06/S0002-9947-97-01738-8/S0002-9947-97-01738-8.pdf Ramanujan's class invariants, Kronecker's limit formula, and modular equations]<br>
** BC Berndt, HH Chan, LC Zhang, Transactions of the American Mathematical Society, 1997
+
** Bruce C. Berndt ,  Heng Huat Chan ,  Liang-Cheng Zhang Transactions of the American Mathematical Society, 1997
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7316.pdf Ramanujan’s class invariants and cubic continued fraction]<br>
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7316.pdf Ramanujan’s class invariants and cubic continued fraction]<br>
** BC Berndt, HH Chan, LC Zhang, ACTA ARITHMETICA LXXIII.1 (1995)
+
** Bruce C. Berndt ,  Heng Huat Chan ,  Liang-Cheng Zhang, ACTA ARITHMETICA LXXIII.1 (1995)
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://scholar.google.com/scholar?q=ramanujan%27s+class+invariants&hl=ko&lr=&start=10&sa=N
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 
  
 
 
 
 

2009년 10월 24일 (토) 14:09 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개
  • 라마누잔이 많은 계산 결과를 남겨놓은 분야
  • class field theory에서 중요한 역할을 함
    \(G_n:=(2kk')^{-1/12}=2^{-1/4}f(\sqrt{-n})\)
    \(g_n:=(\frac{k'(\sqrt{-n})^2}{2k(\sqrt{-n})})^{1/12}=2^{-1/4}f_1(\sqrt{-n})\)

 

 

\(g_{58}^2=\frac{\sqrt{29}+5}{2}\)

 

 

정의

\(q=e^{2\pi i \tau}\)

  • 자코비 세타함수[[자코비 세타함수|]]\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)
    \(\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}\)
    \(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)
  • 모듈라 군, j-invariant and the singular moduli
     
    [[모듈라 군, j-invariant and the singular moduli|]]
    \(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
    \(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)

 

  • 베버(Weber) 모듈라 함수
    [[베버(Weber) 모듈라 함수|]]
    \(f(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)
    \(f_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)
    \(f_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)

 

 

 

하위주제들

 

 

 

재미있는 사실

 

 

관련된 다른 주제들

 

 

사전형태의 참고자료

 

관련도서 및 추천도서

 

 

관련논문과 에세이

 

 

블로그