"리만 곡면에서의 호지 이론(Hodge theory)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5>이 항목의 수학노트 원문주소</h5>
+
==개요==
 
 
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
  
 
* X : genus 가 g인 컴팩트 리만곡면
 
* X : genus 가 g인 컴팩트 리만곡면
14번째 줄: 8번째 줄:
 
* <math>\Lambda</math> : rank 2g period lattice
 
* <math>\Lambda</math> : rank 2g period lattice
  
 
+
  
 
+
  
<h5>Hermitian form</h5>
+
==에르미트 형식(Hermitian form)==
  
 
* <math>\Omega^{1,0}</math> 에 다음과 같이 정의되는 non-degenerate Hermitian form이 존재한다<br><math>\omega,\eta\in \Omega^{1,0}</math> 에 대하여, <math>(\omega,\eta)=i\int_{X} \omega \wedge \bar{\eta}</math><br>
 
* <math>\Omega^{1,0}</math> 에 다음과 같이 정의되는 non-degenerate Hermitian form이 존재한다<br><math>\omega,\eta\in \Omega^{1,0}</math> 에 대하여, <math>(\omega,\eta)=i\int_{X} \omega \wedge \bar{\eta}</math><br>
 
* <math>dz\wedge d\bar{z}=-2i dx\wedge dy</math>
 
* <math>dz\wedge d\bar{z}=-2i dx\wedge dy</math>
 +
* 이 에르미트 구조와 호몰로지의 rank 2g 격자가 리만 곡면을 결정
 +
  
 
+
  
 
+
  
 
+
==역사==
  
<h5>역사</h5>
+
 
 
 
 
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  
 
+
  
 
+
  
<h5>메모</h5>
+
==메모==
  
 
* http://math.stackexchange.com/questions/41199/differential-forms
 
* http://math.stackexchange.com/questions/41199/differential-forms
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[아벨-야코비 정리]]
 
* [[아벨-야코비 정리]]
  
 
+
 
 
 
 
  
<h5>수학용어번역</h5>
+
  
*  단어사전<br>
+
==수학용어번역==
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
* {{Forvo|url=Hodge}}
  
 
+
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
*  
+
*
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
85번째 줄: 68번째 줄:
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
  
 
+
  
 
+
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
97번째 줄: 80번째 줄:
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
  
 
+
  
 
+
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트==
  
 
+
  
 
+
  
 
+
  
<h5>관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
115번째 줄: 98번째 줄:
 
* http://dx.doi.org/
 
* http://dx.doi.org/
  
 
+
  
 
+
  
<h5>관련도서</h5>
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 9월 20일 (목) 13:44 판

개요

  • X : genus 가 g인 컴팩트 리만곡면
  • \(H^{1}(X;\mathbb{C})\) : 복소 1-form에 대한 드람 코호몰로지, 차원이 2g인 복소벡터공간
  • \(\Omega^{1,0}\) : space of holomorphic differential 1-forms, 차원이 g인 복소벡터공간
  • \(\Omega^{0,1}\) : space of anti-holomorphic differential 1-forms, 차원이 g인 복소벡터공간
  • \(H^{1}(X;\mathbb{C})=\Omega^{1,0}\oplus \Omega^{0,1}\)
  • \(\Lambda\) : rank 2g period lattice



에르미트 형식(Hermitian form)

  • \(\Omega^{1,0}\) 에 다음과 같이 정의되는 non-degenerate Hermitian form이 존재한다
    \(\omega,\eta\in \Omega^{1,0}\) 에 대하여, \((\omega,\eta)=i\int_{X} \omega \wedge \bar{\eta}\)
  • \(dz\wedge d\bar{z}=-2i dx\wedge dy\)
  • 이 에르미트 구조와 호몰로지의 rank 2g 격자가 리만 곡면을 결정




역사



메모



관련된 항목들



수학용어번역

  • Hodge - 발음사전 Forvo


매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트

관련논문



관련도서