"리만 곡면에서의 호지 이론(Hodge theory)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==매스매티카 파일 및 계산 리소스== * * http://www.wolframalpha.com/input/?i= * http://functions.wolfram.com/ * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] * [http://people.math.sfu.ca/%7Ec) |
||
57번째 줄: | 57번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
2012년 11월 2일 (금) 08:02 판
개요
- X : genus 가 g인 컴팩트 리만곡면
- \(H^{1}(X;\mathbb{C})\) : 복소 1-form에 대한 드람 코호몰로지, 차원이 2g인 복소벡터공간
- \(\Omega^{1,0}\) : space of holomorphic differential 1-forms, 차원이 g인 복소벡터공간
- \(\Omega^{0,1}\) : space of anti-holomorphic differential 1-forms, 차원이 g인 복소벡터공간
- \(H^{1}(X;\mathbb{C})=\Omega^{1,0}\oplus \Omega^{0,1}\)
- \(\Lambda\) : rank 2g period lattice
에르미트 형식(Hermitian form)
- \(\Omega^{1,0}\) 에 다음과 같이 정의되는 non-degenerate Hermitian form이 존재한다
\(\omega,\eta\in \Omega^{1,0}\) 에 대하여, \((\omega,\eta)=i\int_{X} \omega \wedge \bar{\eta}\) - \(dz\wedge d\bar{z}=-2i dx\wedge dy\)
- 이 에르미트 구조와 호몰로지의 rank 2g 격자가 리만 곡면을 결정
역사
메모
- http://math.stackexchange.com/questions/41199/differential-forms
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- Hodge - 발음사전 Forvo
- 발음은 '하지'에 가깝다
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations