"미분형식을 통한 곡면론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 5개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
11번째 줄: | 5번째 줄: | ||
* (orthonomal) 프레임 <math>\{e_1,e_2\}</math> | * (orthonomal) 프레임 <math>\{e_1,e_2\}</math> | ||
* 코프레임 <math>\{\omega_1,\omega_2\}</math> | * 코프레임 <math>\{\omega_1,\omega_2\}</math> | ||
− | * 접속형식(1-form) | + | * 접속형식(1-form):<math>\omega_{12}=-\omega_{21}</math> |
− | * 곡률형식(2-form) | + | * 곡률형식(2-form):<math>d\omega_{12}</math> |
− | * 카르탄 구조 방정식 | + | * 카르탄 구조 방정식:<math>d\omega_{1}=\omega_{12}\wedge \omega_{2}</math>:<math>d\omega_{2}=-\omega_{12}\wedge \omega_{1}</math>:<math>d\omega_{12}(p)=-K(p)(\omega_{1}\wedge \omega_{2})(p)</math> |
* 곡률형식에서의 <math>K(p)</math> 를 가우스곡률이라 부른다 | * 곡률형식에서의 <math>K(p)</math> 를 가우스곡률이라 부른다 | ||
− | + | ||
− | + | ||
==예== | ==예== | ||
26번째 줄: | 20번째 줄: | ||
* <math>\omega_{12}=-\frac{(\sqrt{E})_{v}}{\sqrt{G}}du+\frac{(\sqrt{G})_{u}}{\sqrt{E}}dv</math> | * <math>\omega_{12}=-\frac{(\sqrt{E})_{v}}{\sqrt{G}}du+\frac{(\sqrt{G})_{u}}{\sqrt{E}}dv</math> | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
==메모== | ==메모== | ||
− | + | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | + | ||
− | + | ||
==수학용어번역== | ==수학용어번역== | ||
− | * 단어사전 | + | * 단어사전 |
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
− | * | + | * 발음사전 http://www.forvo.com/search/ |
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
− | * | + | * |
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* http://functions.wolfram.com/ | * http://functions.wolfram.com/ | ||
84번째 줄: | 67번째 줄: | ||
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
− | + | ||
− | + | ||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
96번째 줄: | 79번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | + | ||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
[[분류:미분기하학]] | [[분류:미분기하학]] |
2020년 12월 28일 (월) 02:23 기준 최신판
개요
- 미분기하학
- 메트릭 텐서
- (orthonomal) 프레임 \(\{e_1,e_2\}\)
- 코프레임 \(\{\omega_1,\omega_2\}\)
- 접속형식(1-form)\[\omega_{12}=-\omega_{21}\]
- 곡률형식(2-form)\[d\omega_{12}\]
- 카르탄 구조 방정식\[d\omega_{1}=\omega_{12}\wedge \omega_{2}\]\[d\omega_{2}=-\omega_{12}\wedge \omega_{1}\]\[d\omega_{12}(p)=-K(p)(\omega_{1}\wedge \omega_{2})(p)\]
- 곡률형식에서의 \(K(p)\) 를 가우스곡률이라 부른다
예
- \(e_1=f_{u}/\sqrt{E}\), \(e_2=f_{v}/\sqrt{G}\) 를 orthonormal frame 이라 하자
- \(\omega_1=\sqrt{E}du\), \(\omega_2=\sqrt{G}dv\)
- \(\omega_{12}=-\frac{(\sqrt{E})_{v}}{\sqrt{G}}du+\frac{(\sqrt{G})_{u}}{\sqrt{E}}dv\)
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations