"선형대수학"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)   (→노트:  새 문단)  | 
				|||
| (사용자 3명의 중간 판 49개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==개요==  | |
| + | * 고등학교에서 배우는 3차원 공간벡터의 성질들을 추상화하여, 일반적인 벡터공간을 정의하고, 그 공간들 사이의 함수가 되는 선형사상 및 행렬을 공부함.  | ||
| + | * 선형사상과 행렬의 대비 및 둘 사이의 긴장감을 공부함.  | ||
| + | * 수학에서 많이 사용되는 언어를 익히는 부분과, 일차방정식의 해, 정방행렬의 분류와 같은 선형대수학 자체의 문제로 볼 수 있는 부분이 섞여 있음.  | ||
| − | + | ||
| − | + | ||
| − | + | ==다루는 대상==  | |
| − | 벡터공간  | + | * 벡터, 벡터공간, 행렬, 선형사상  | 
| − | + | ||
| − | + | ||
| − | + | ==중요한 개념 및 정리==  | |
| − | |||
| − | |||
| − | + | *  벡터공간  | |
| + | ** 스칼라와 벡터  | ||
| + | ** 선형대수학 = 체의 모듈 이론  | ||
| + | * 선형사상  | ||
| + | *  행렬   | ||
| + | ** 선형사상을 구체적으로 표현하기 위한 언어  | ||
| + | *  연립방정식 풀기  | ||
| + | ** row reduction 을 통한 해 구하기  | ||
| + | ** 역행렬을 통한 해 구하기  | ||
| + | ** LU 분해, LDU 분해, PLU 분해. …  | ||
| + | *  Fundamental spaces of a matrix  | ||
| + | ** 열공간, 행공간, 영공간(null space), 전치행렬의 영공간  | ||
| + | * Dimension 정리  | ||
| + | * 행렬식  | ||
| + | * 고유값, 고유벡터, 대각화  | ||
| + | *  선형 사상의 분해 또는 Jordan canonical form 에 따른 n x n 행렬의 분류  | ||
| + | ** 대각화의 일반화  | ||
| + | ** Principal Ideal Domain의 module theory의 관점에서 바라볼 수 있음.  | ||
| + | *  내적공간  | ||
| + | ** 거리와 각도를 잴 수 있는 벡터공간  | ||
| + | * [[특성 다항식]]  | ||
| − | |||
| − | + | ==유명한 정리 혹은 재미있는 문제==  | |
| + | *  케일리-해밀턴 정리    | ||
| − | |||
| − | + | ==선수 과목==  | |
| − | *   | + | * 대학과정에서 요구되는 선수 과목은 없음.  | 
| − | *  | + | *  고교 수학의 행렬, 일차변환에의 익숙함은 도움이 됨.    | 
| − | |||
| − | + | ==다른 과목과의 관련성==  | |
| − | *    | + | * [[다변수미적분학]]  | 
| − | ** 내적공간의   | + | * [[상미분방정식]]  | 
| + | *  해석학   | ||
| + | ** 내적공간의 개념은 해석학 과목에서 푸리에 시리즈를 공부할 때 필요함.  | ||
| + | ** 해석학에서 유용한 개념인 힐버트 공간은 선형대수학의 내적공간의 개념을 요청함.  | ||
| + | *  양자역학  | ||
| + | ** 양자역학은 힐버트 공간의 벡터와 그에 작용하는 Hermitian operator의 언어로 기술됨.  | ||
| − | + | ||
| − | + | ||
| − | <  | + | ==관련된 대학원 과목 또는 더 공부하면 좋은 것들==  | 
| + | |||
| + | * [[미분형식 (differential forms)과 다변수 미적분학|Multilinear algebra]]  | ||
| + | * [[코딩이론]]  | ||
| + | ** 선형대수를 처음 배울 때는, 보통 스칼라로 사용하는 체를 실수 혹은 복소수로 생각하게 됨.  | ||
| + | ** 코딩이론은 유한체 위에서 행해지는 선형대수학  | ||
| + | * [[이차형식]]  | ||
| + | **  내적공간의 일반화로서, 좀더 일반적인 symmetric bilinear form 이 주어져 있는 벡터공간, 즉 quadratic space 에 대한 공부는 이차형식의 영역으로 안내.  | ||
| + | * [[유한군의 표현론]]  | ||
| + | * 리대수와 표현론  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ==메모==  | ||
| + | |||
| + | * principal axis theorem  | ||
| + | * [http://matrix.skku.ac.kr/sglee/linear/ocu/20101.html 행렬 이론의 과거와 현재]  | ||
| + | ** 대한수학회 뉴스레터 V. 55, pp. 20-27 (1997 9월) S.G. Lee and O.K. Kang  | ||
| + | |||
| + | |||
| + | |||
| + | ==관련된 항목들==  | ||
| + | |||
| + | |||
| + | |||
| + | ==리뷰, 에세이, 강의노트==  | ||
| + | * Kahl, Helmut. “Symmetric Matrices: Theory and Applications.” arXiv:1408.5923 [math], August 25, 2014. http://arxiv.org/abs/1408.5923.  | ||
| + | |||
| + | |||
| + | |||
| + | ==관련논문==  | ||
| + | |||
| + | * [http://www.jstor.org/stable/2686426 The Growing Importance of Linear Algebra in Undergraduate Mathematics]  | ||
| + | ** Alan Tucker, <cite>The College Mathematics Journal</cite>, Vol. 24, No. 1 (Jan., 1993), pp. 3-9  | ||
| + | * [http://www.jstor.org/stable/2320145 Hermann Grassmann and the Creation of Linear Algebra]  | ||
| + | ** Desmond Fearnley-Sander, <cite>The American Mathematical Monthly</cite>, Vol. 86, No. 10 (Dec., 1979), pp. 809-817  | ||
| + | * [http://www.jstor.org/stable/2686430 The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra]  | ||
| + | ** David Carlson, Charles R. Johnson, David C. Lay and A. Duane Porter, <cite>The College Mathematics Journal</cite>, Vol. 24, No. 1 (Jan., 1993), pp. 41-46  | ||
| + | * [http://www.jstor.org/stable/3026998 Linear Algebra, a Potent Tool]  | ||
| + | ** Anneli Lax, <cite>The Two-Year College Mathematics Journal</cite>, Vol. 7, No. 2 (May, 1976), pp. 3-15  | ||
| + | * [http://www.jstor.org/stable/3620391 A Gemstone in Matrix Algebra]  | ||
| + | ** Tony Crill, <cite>The Mathematical Gazette</cite>, Vol. 76, No. 475, The Use of the History of Mathematics in the Teaching of Mathematics (Mar., 1992), pp. 182-188  | ||
| + | * [http://www.jstor.org/stable/2322413 Gauss-Jordan Reduction: A Brief History]  | ||
| + | ** Steven C. Althoen and Renate McLaughlin, <cite>The American Mathematical Monthly</cite>, Vol. 94, No. 2 (Feb., 1987), pp. 130-142  | ||
| + | [[분류:교과목]]  | ||
| + | [[분류:선형대수학]]  | ||
| + | |||
| + | == 노트 ==  | ||
| + | |||
| + | * This course parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra.<ref name="ref_faf8">[https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/ Linear Algebra]</ref>  | ||
| + | * This gives a small taste of the very core of linear algebra that interests us as machine learning practitioners.<ref name="ref_491b">[https://machinelearningmastery.com/gentle-introduction-linear-algebra/ A Gentle Introduction to Linear Algebra]</ref>  | ||
| + | * In it, he demonstrates specific mathematical tools rooted in linear algebra.<ref name="ref_491b" />  | ||
| + | * Welcome to the Home Page for the CAU course on Linear Algebra.<ref name="ref_c3bd">[http://cau.ac.kr/~mhhgtx/courses/LinearAlgebra/ Linear Algebra (Hayes)]</ref>  | ||
| + | * Linear Algebra also has a supplemental, optional, lab manual using Sage.<ref name="ref_3aa6">[http://joshua.smcvt.edu/linearalgebra/ Free Linear Algebra textbook]</ref>  | ||
| + | * Linear algebra usually starts with the study of vectors, which are understood as quantities having both magnitude and direction.<ref name="ref_c5e3">[https://www.britannica.com/science/linear-algebra Linear algebra]</ref>  | ||
| + | * The branch of maths treating simultaneous linear equations is called linear algebra.<ref name="ref_bfa0">[https://warwick.ac.uk/fac/sci/maths/undergrad/ughandbook/year1/ma106/ MA106 Linear Algebra]</ref>  | ||
| + | * Linear algebra uses the tools and methods of vector and matrix operations to determine the properties of linear systems.<ref name="ref_a0e6">[https://www.wolframalpha.com/examples/mathematics/linear-algebra/ Alpha Examples: Linear Algebra]</ref>  | ||
| + | * In 1844 Hermann Grassmann published his "Theory of Extension" which included foundational new topics of what is today called linear algebra.<ref name="ref_f4b3">[https://en.wikipedia.org/wiki/Linear_algebra Linear algebra]</ref>  | ||
| + | * Linear algebra grew with ideas noted in the complex plane .<ref name="ref_f4b3" />  | ||
| + | * Linear algebra is flat differential geometry and serves in tangent spaces to manifolds .<ref name="ref_f4b3" />  | ||
| + | * Until the 19th century, linear algebra was introduced through systems of linear equations and matrices .<ref name="ref_f4b3" />  | ||
| + | * A linear algebra also admits an outer operation of multiplication by scalars (that are elements of the underlying field ).<ref name="ref_d867">[https://mathworld.wolfram.com/LinearAlgebra.html Linear Algebra -- from Wolfram MathWorld]</ref>  | ||
| + | * For example, the set of all linear transformations from a vector space to itself over a field forms a linear algebra over .<ref name="ref_d867" />  | ||
| + | * This self-contained, clearly written textbook on linear algebra is easily accessible for students.<ref name="ref_4c56">[https://www.springer.com/gp/book/9783319637921 Belkacem Said-Houari]</ref>  | ||
| + | * Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome.<ref name="ref_90ec">[https://www.journals.elsevier.com/linear-algebra-and-its-applications Linear Algebra and its Applications]</ref>  | ||
| + | * “Linear Algebra” means, roughly, “line-like relationships”.<ref name="ref_425f">[https://betterexplained.com/articles/linear-algebra-guide/ An Intuitive Guide to Linear Algebra – BetterExplained]</ref>  | ||
| + | * Linear algebra emerged in the 1800s yet spreadsheets were invented in the 1980s.<ref name="ref_425f" />  | ||
| + | * The beauty of linear algebra is representing an entire spreadsheet calculation with a single letter.<ref name="ref_425f" />  | ||
| + | * A First Course in Linear Algebra is an introductory textbook designed for university sophomores and juniors.<ref name="ref_a821">[http://linear.ups.edu/ A First Course in Linear Algebra (A Free Textbook)]</ref>  | ||
| + | * This is a book for anyone who wants to really understand linear algebra.<ref name="ref_5aa1">[https://www.cambridge.org/9781107177901 Linear Algebra | Algebra]</ref>  | ||
| + | * Therefore, the tools from linear algebra are used in many fields.<ref name="ref_5aa1" />  | ||
| + | * This book appeared as lecture notes for the course "Honors Linear Algebra".<ref name="ref_621d">[https://www.math.brown.edu/~treil/papers/LADW/LADW.html Linear Algebra Done Wrong]</ref>  | ||
| + | * In most standard ways this text is consistent with traditional philosophies for teaching Linear Algebra.<ref name="ref_8091">[https://open.umn.edu/opentextbooks/textbooks/188 Open Textbook Library]</ref>  | ||
| + | * The text is organized in a familiar manner ideal for those searching first to find applications of linear algebra.<ref name="ref_8091" />  | ||
| + | * Linear Algebra is an online and individually-paced course equivalent to a first-year college linear algebra course.<ref name="ref_8b3f">[https://cty.jhu.edu/online/courses/mathematics/linear_algebra.html Johns Hopkins Center for Talented Youth]</ref>  | ||
| + | * The next challenge is to figure out how to learn Linear Algebra.<ref name="ref_bb81">[https://www.analyticsvidhya.com/blog/2017/05/comprehensive-guide-to-linear-algebra/ A comprehensive guide for beginners]</ref>  | ||
| + | * If you have faced this question about how to learn & what to learn in Linear Algebra – you are at the right place.<ref name="ref_bb81" />  | ||
| + | * So, now you would understand the importance of Linear Algebra in machine learning.<ref name="ref_bb81" />  | ||
| + | * This should be motivation enough to go through the material below to get you started on Linear Algebra.<ref name="ref_bb81" />  | ||
| + | ===소스===  | ||
| + |  <references />  | ||
2020년 12월 16일 (수) 09:43 기준 최신판
개요
- 고등학교에서 배우는 3차원 공간벡터의 성질들을 추상화하여, 일반적인 벡터공간을 정의하고, 그 공간들 사이의 함수가 되는 선형사상 및 행렬을 공부함.
 - 선형사상과 행렬의 대비 및 둘 사이의 긴장감을 공부함.
 - 수학에서 많이 사용되는 언어를 익히는 부분과, 일차방정식의 해, 정방행렬의 분류와 같은 선형대수학 자체의 문제로 볼 수 있는 부분이 섞여 있음.
 
 
 
다루는 대상
- 벡터, 벡터공간, 행렬, 선형사상
 
 
 
중요한 개념 및 정리
- 벡터공간
- 스칼라와 벡터
 - 선형대수학 = 체의 모듈 이론
 
 - 선형사상
 - 행렬
- 선형사상을 구체적으로 표현하기 위한 언어
 
 - 연립방정식 풀기
- row reduction 을 통한 해 구하기
 - 역행렬을 통한 해 구하기
 - LU 분해, LDU 분해, PLU 분해. …
 
 - Fundamental spaces of a matrix
- 열공간, 행공간, 영공간(null space), 전치행렬의 영공간
 
 - Dimension 정리
 - 행렬식
 - 고유값, 고유벡터, 대각화
 - 선형 사상의 분해 또는 Jordan canonical form 에 따른 n x n 행렬의 분류
- 대각화의 일반화
 - Principal Ideal Domain의 module theory의 관점에서 바라볼 수 있음.
 
 - 내적공간
- 거리와 각도를 잴 수 있는 벡터공간
 
 - 특성 다항식
 
유명한 정리 혹은 재미있는 문제
- 케일리-해밀턴 정리
 
선수 과목
- 대학과정에서 요구되는 선수 과목은 없음.
 - 고교 수학의 행렬, 일차변환에의 익숙함은 도움이 됨.
 
다른 과목과의 관련성
- 다변수미적분학
 - 상미분방정식
 - 해석학
- 내적공간의 개념은 해석학 과목에서 푸리에 시리즈를 공부할 때 필요함.
 - 해석학에서 유용한 개념인 힐버트 공간은 선형대수학의 내적공간의 개념을 요청함.
 
 - 양자역학
- 양자역학은 힐버트 공간의 벡터와 그에 작용하는 Hermitian operator의 언어로 기술됨.
 
 
 
 
관련된 대학원 과목 또는 더 공부하면 좋은 것들
- Multilinear algebra
 - 코딩이론
- 선형대수를 처음 배울 때는, 보통 스칼라로 사용하는 체를 실수 혹은 복소수로 생각하게 됨.
 - 코딩이론은 유한체 위에서 행해지는 선형대수학
 
 - 이차형식
- 내적공간의 일반화로서, 좀더 일반적인 symmetric bilinear form 이 주어져 있는 벡터공간, 즉 quadratic space 에 대한 공부는 이차형식의 영역으로 안내.
 
 - 유한군의 표현론
 - 리대수와 표현론
 
 
 
메모
- principal axis theorem
 - 행렬 이론의 과거와 현재
- 대한수학회 뉴스레터 V. 55, pp. 20-27 (1997 9월) S.G. Lee and O.K. Kang
 
 
 
관련된 항목들
리뷰, 에세이, 강의노트
- Kahl, Helmut. “Symmetric Matrices: Theory and Applications.” arXiv:1408.5923 [math], August 25, 2014. http://arxiv.org/abs/1408.5923.
 
 
관련논문
- The Growing Importance of Linear Algebra in Undergraduate Mathematics
- Alan Tucker, The College Mathematics Journal, Vol. 24, No. 1 (Jan., 1993), pp. 3-9
 
 - Hermann Grassmann and the Creation of Linear Algebra
- Desmond Fearnley-Sander, The American Mathematical Monthly, Vol. 86, No. 10 (Dec., 1979), pp. 809-817
 
 - The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra
- David Carlson, Charles R. Johnson, David C. Lay and A. Duane Porter, The College Mathematics Journal, Vol. 24, No. 1 (Jan., 1993), pp. 41-46
 
 - Linear Algebra, a Potent Tool
- Anneli Lax, The Two-Year College Mathematics Journal, Vol. 7, No. 2 (May, 1976), pp. 3-15
 
 - A Gemstone in Matrix Algebra
- Tony Crill, The Mathematical Gazette, Vol. 76, No. 475, The Use of the History of Mathematics in the Teaching of Mathematics (Mar., 1992), pp. 182-188
 
 - Gauss-Jordan Reduction: A Brief History
- Steven C. Althoen and Renate McLaughlin, The American Mathematical Monthly, Vol. 94, No. 2 (Feb., 1987), pp. 130-142
 
 
노트
- This course parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra.[1]
 - This gives a small taste of the very core of linear algebra that interests us as machine learning practitioners.[2]
 - In it, he demonstrates specific mathematical tools rooted in linear algebra.[2]
 - Welcome to the Home Page for the CAU course on Linear Algebra.[3]
 - Linear Algebra also has a supplemental, optional, lab manual using Sage.[4]
 - Linear algebra usually starts with the study of vectors, which are understood as quantities having both magnitude and direction.[5]
 - The branch of maths treating simultaneous linear equations is called linear algebra.[6]
 - Linear algebra uses the tools and methods of vector and matrix operations to determine the properties of linear systems.[7]
 - In 1844 Hermann Grassmann published his "Theory of Extension" which included foundational new topics of what is today called linear algebra.[8]
 - Linear algebra grew with ideas noted in the complex plane .[8]
 - Linear algebra is flat differential geometry and serves in tangent spaces to manifolds .[8]
 - Until the 19th century, linear algebra was introduced through systems of linear equations and matrices .[8]
 - A linear algebra also admits an outer operation of multiplication by scalars (that are elements of the underlying field ).[9]
 - For example, the set of all linear transformations from a vector space to itself over a field forms a linear algebra over .[9]
 - This self-contained, clearly written textbook on linear algebra is easily accessible for students.[10]
 - Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome.[11]
 - “Linear Algebra” means, roughly, “line-like relationships”.[12]
 - Linear algebra emerged in the 1800s yet spreadsheets were invented in the 1980s.[12]
 - The beauty of linear algebra is representing an entire spreadsheet calculation with a single letter.[12]
 - A First Course in Linear Algebra is an introductory textbook designed for university sophomores and juniors.[13]
 - This is a book for anyone who wants to really understand linear algebra.[14]
 - Therefore, the tools from linear algebra are used in many fields.[14]
 - This book appeared as lecture notes for the course "Honors Linear Algebra".[15]
 - In most standard ways this text is consistent with traditional philosophies for teaching Linear Algebra.[16]
 - The text is organized in a familiar manner ideal for those searching first to find applications of linear algebra.[16]
 - Linear Algebra is an online and individually-paced course equivalent to a first-year college linear algebra course.[17]
 - The next challenge is to figure out how to learn Linear Algebra.[18]
 - If you have faced this question about how to learn & what to learn in Linear Algebra – you are at the right place.[18]
 - So, now you would understand the importance of Linear Algebra in machine learning.[18]
 - This should be motivation enough to go through the material below to get you started on Linear Algebra.[18]
 
소스
- ↑ Linear Algebra
 - ↑ 2.0 2.1 A Gentle Introduction to Linear Algebra
 - ↑ Linear Algebra (Hayes)
 - ↑ Free Linear Algebra textbook
 - ↑ Linear algebra
 - ↑ MA106 Linear Algebra
 - ↑ Alpha Examples: Linear Algebra
 - ↑ 8.0 8.1 8.2 8.3 Linear algebra
 - ↑ 9.0 9.1 Linear Algebra -- from Wolfram MathWorld
 - ↑ Belkacem Said-Houari
 - ↑ Linear Algebra and its Applications
 - ↑ 12.0 12.1 12.2 An Intuitive Guide to Linear Algebra – BetterExplained
 - ↑ A First Course in Linear Algebra (A Free Textbook)
 - ↑ 14.0 14.1 Linear Algebra | Algebra
 - ↑ Linear Algebra Done Wrong
 - ↑ 16.0 16.1 Open Textbook Library
 - ↑ Johns Hopkins Center for Talented Youth
 - ↑ 18.0 18.1 18.2 18.3 A comprehensive guide for beginners