"전자기 텐서와 맥스웰 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
 
(같은 사용자의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[전자기 텐서와 맥스웰 방정식]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
* 맥스웰 방정식을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다
+
* [[맥스웰 방정식]]을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다
  
 
+
  
 
 
  
==기호==
+
==전자기 텐서==
 
+
===기호===
* 4-current 
+
* 4-current
 
* <math> j^{\alpha}=(c\rho, J_x,J_y,J_z)</math>
 
* <math> j^{\alpha}=(c\rho, J_x,J_y,J_z)</math>
 
* <math> \partial_\alpha= \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right) </math>
 
* <math> \partial_\alpha= \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right) </math>
 
* http://en.wikipedia.org/wiki/4-gradient
 
* http://en.wikipedia.org/wiki/4-gradient
  
 
+
===정의===
 
+
* [[전자기 포텐셜과 맥스웰 방정식|포벡터 포텐셜]]
 
 
 
 
==정의==
 
 
 
* [[전자기 포텐셜과 맥스웰 방정식|포벡터 포텐셜]]<br>
 
 
** <math>A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})</math>, <math>\alpha=0,1,2,3</math>
 
** <math>A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})</math>, <math>\alpha=0,1,2,3</math>
* 전자기 텐서의 성분을 <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math> 로 정의한다<br>
+
* 전자기 텐서의 성분을 <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math> 로 정의한다
** <br>
+
** 예
** <math>F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=-\frac{1}{c}\frac{\partial A_{x}}{\partial t} -\frac{1}{c}\frac{\partial \phi}{\partial x}=\frac{E_{x}}{c}</math><br>
+
** <math>F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=-\frac{1}{c}\frac{\partial A_{x}}{\partial t} -\frac{1}{c}\frac{\partial \phi}{\partial x}=\frac{E_{x}}{c}</math>
** <math>F_{12}=\partial_{1} A_{2} - \partial_{2} A_{1}=-\frac{\partial A_{y}}{\partial x} -\frac{\partial A_{x}}{\partial y}=-B_{z}</math><br>
+
** <math>F_{12}=\partial_{1} A_{2} - \partial_{2} A_{1}=-\frac{\partial A_{y}}{\partial x}+\frac{\partial A_{x}}{\partial y}=-B_{z}</math>
*  전자기 텐서의 성분을 다음과 같은 행렬로 표현하자<br><math>\left( \begin{array}{cccc}  F_{00} & F_{01} & F_{02} & F_{03} \\  F_{10} & F_{11} & F_{12} & F_{13} \\  F_{20} & F_{21} & F_{22} & F_{23} \\  F_{30} & F_{31} & F_{32} & F_{33} \end{FrrFy} \right)</math><br>
+
*  전자기 텐서의 성분을 다음과 같은 행렬로 표현하자 :<math>\left( \begin{array}{cccc}  F_{00} & F_{01} & F_{02} & F_{03} \\  F_{10} & F_{11} & F_{12} & F_{13} \\  F_{20} & F_{21} & F_{22} & F_{23} \\  F_{30} & F_{31} & F_{32} & F_{33} \end{array} \right)</math>
 +
*  전자기 텐서의 성분은 다음과 같다
 +
:<math>F_{\mu\nu} =\left( \begin{array}{cccc}  0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\  -\frac{E_x}{c} & 0 & -B_z & B_y \\  -\frac{E_y}{c} & B_z & 0 & -B_x \\  -\frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math>:<math>F^{\mu\nu} =\left( \begin{array}{cccc}  0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\  \frac{E_x}{c} & 0 & -B_z & B_y \\  \frac{E_y}{c} & B_z & 0 & -B_x \\  \frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math>
  
*  전자기 텐서의 성분은 다음과 같다<br><math>F_{\mu\nu} =\left( \begin{array}{cccc}  0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\  -\frac{E_x}{c} & 0 & -B_z & B_y \\  -\frac{E_y}{c} & B_z & 0 & -B_x \\  -\frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math><br><math>F^{\mu\nu} =\left( \begin{array}{cccc}  0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\  \frac{E_x}{c} & 0 & -B_z & B_y \\  \frac{E_y}{c} & B_z & 0 & -B_x \\  \frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)</math><br>
 
  
 
 
  
 
+
===전자기 텐서와 전자기 포텐셜===
 +
:<math>\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right)
 +
=\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)</math>
  
==전자기 텐서와 전자기 포텐셜==
 
  
<math>\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right)</math>
 
 
<math>=\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)</math>
 
 
 
 
 
 
 
 
 
 
  
 
==맥스웰 방정식==
 
==맥스웰 방정식==
  
*  맥스웰 방정식은 다음 두 개의 방정식으로 표현된다<br><math>\epsilon^{\alpha \beta \gamma \delta} \frac{\partial F_{\alpha \beta}}{\partial x^\gamma}=0</math><br><math>\partial_{\mu}F^{\mu\nu}=\mu_0 j^{\nu}</math><br>
+
*  맥스웰 방정식은 다음 두 개의 방정식으로 표현된다
* 두번째 방정식을 각 성분에 대해 풀어쓰면 다음이 얻어진다<br><math>\partial_{\mu}F^{\mu 0}=\mu_0 j^{0}</math> 는 전기장에 대한 가우스 법칙 <math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math>과 같다<br><math>\partial_{\mu}F^{\mu 1}=\mu_0 j^{1}</math>, <math>\partial_{\mu}F^{\mu 2}=\mu_0 j^{2}</math>, <math>,\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}</math> 은 은 앙페르 법칙 <math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>의 각 성분과 같다<br>
+
:<math>\epsilon^{\alpha \beta \gamma \delta} \frac{\partial F_{\alpha \beta}}{\partial x^\gamma}=0 \label{fbg}</math>
 
+
:<math>\partial_{\mu}F^{\mu\nu}=\mu_0 j^{\nu}\label{aeg} </math>
 
+
===방정식 \ref{fbg}===
 
+
* 비앙키 항등식
 
+
* 풀어쓰면 다음의 방정식을 얻는다
 
+
:<math>
 
+
\begin{array}{l}
 
+
\frac{\partial F_{1\ 2}}{\partial x^0}+\frac{\partial F_{2\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^2}=-\frac{\frac{\partial }{\partial t}B_z-\frac{\partial }{\partial y}E_x+\frac{\partial }{\partial x}E_y}{c}=0 \\
==미분형식==
+
\frac{\partial F_{1\ 3}}{\partial x^0}+\frac{\partial F_{3\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^3}=\frac{\frac{\partial }{\partial t}B_y+\frac{\partial }{\partial z}E_x-\frac{\partial }{\partial x}E_z}{c}=0 \\
 
+
\frac{\partial F_{2\ 3}}{\partial x^0}+\frac{\partial F_{3\ 0}}{\partial x^2}+\frac{\partial F_{0\ 2}}{\partial x^3}=-\frac{\frac{\partial }{\partial t}B_x-\frac{\partial }{\partial z}E_y+\frac{\partial }{\partial y}E_z}{c}=0 \\
* [[미분형식과 맥스웰 방정식|맥스웰 방정식과 미분형식]]
+
\frac{\partial F_{2\ 3}}{\partial x^1}+\frac{\partial F_{3\ 1}}{\partial x^2}+\frac{\partial F_{1\ 2}}{\partial x^3}=-\frac{\partial }{\partial x}B_x-\frac{\partial }{\partial y}B_y-\frac{\partial }{\partial z}B_z=0
 
+
\end{array}
 
+
</math>
 
+
* 처음의 세 방정식은 패러데이의 법칙에 대한 각 성분에 해당한다
 
+
:<math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>
 
+
* 네번째 방정식은 자기장에 대한 가우스의 법칙이다
==역사==
+
:<math>\nabla \cdot \mathbf{B} = 0</math>
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
==메모==
 
  
 
 
  
* Math Overflow http://mathoverflow.net/search?q=
+
===방정식 \ref{aeg}===
 +
* 양-밀스 방정식
 +
* 각 성분에 대해 풀어쓰면 다음이 얻어진다
 +
* <math>\partial_{\mu}F^{\mu 0}=\mu_0 j^{0}</math> 는 전기장에 대한 가우스 법칙
 +
:<math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math>
 +
* <math>\partial_{\mu}F^{\mu 1}=\mu_0 j^{1},\partial_{\mu}F^{\mu 2}=\mu_0 j^{2},\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}</math>은 앙페르 법칙의 각 성분
 +
:<math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>
 +
  
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
 +
* [[미분형식과 맥스웰 방정식]]
  
 
+
   
 
 
 
 
 
 
==수학용어번역==
 
 
 
* 단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
  
 +
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxTi1yem4wNy1IRUk/edit
  
*  
+
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
+
==사전 형태의 자료==
  
 
+
* http://ko.wikipedia.org/wiki/전자기_텐서
 
 
==사전 형태의 자료==
 
 
 
* [http://ko.wikipedia.org/wiki/%EC%A0%84%EC%9E%90%EA%B8%B0_%ED%85%90%EC%84%9C http://ko.wikipedia.org/wiki/전자기_텐서]
 
 
* http://en.wikipedia.org/wiki/Electromagnetic_tensor
 
* http://en.wikipedia.org/wiki/Electromagnetic_tensor
 
* http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
 
* http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
+
[[분류:수리물리학]]
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2462410 Q2462410]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'four'}, {'OP': '*'}, {'LEMMA': 'gradient'}]

2021년 2월 17일 (수) 05:58 기준 최신판

개요

  • 맥스웰 방정식을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다



전자기 텐서

기호

정의

  • 포벡터 포텐셜
    • \(A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})\), \(\alpha=0,1,2,3\)
  • 전자기 텐서의 성분을 \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\) 로 정의한다
    • \(F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=-\frac{1}{c}\frac{\partial A_{x}}{\partial t} -\frac{1}{c}\frac{\partial \phi}{\partial x}=\frac{E_{x}}{c}\)
    • \(F_{12}=\partial_{1} A_{2} - \partial_{2} A_{1}=-\frac{\partial A_{y}}{\partial x}+\frac{\partial A_{x}}{\partial y}=-B_{z}\)
  • 전자기 텐서의 성분을 다음과 같은 행렬로 표현하자 \[\left( \begin{array}{cccc} F_{00} & F_{01} & F_{02} & F_{03} \\ F_{10} & F_{11} & F_{12} & F_{13} \\ F_{20} & F_{21} & F_{22} & F_{23} \\ F_{30} & F_{31} & F_{32} & F_{33} \end{array} \right)\]
  • 전자기 텐서의 성분은 다음과 같다

\[F_{\mu\nu} =\left( \begin{array}{cccc} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ -\frac{E_x}{c} & 0 & -B_z & B_y \\ -\frac{E_y}{c} & B_z & 0 & -B_x \\ -\frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)\]\[F^{\mu\nu} =\left( \begin{array}{cccc} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)\]


전자기 텐서와 전자기 포텐셜

\[\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right) =\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)\]


맥스웰 방정식

  • 맥스웰 방정식은 다음 두 개의 방정식으로 표현된다

\[\epsilon^{\alpha \beta \gamma \delta} \frac{\partial F_{\alpha \beta}}{\partial x^\gamma}=0 \label{fbg}\] \[\partial_{\mu}F^{\mu\nu}=\mu_0 j^{\nu}\label{aeg} \]

방정식 \ref{fbg}

  • 비앙키 항등식
  • 풀어쓰면 다음의 방정식을 얻는다

\[ \begin{array}{l} \frac{\partial F_{1\ 2}}{\partial x^0}+\frac{\partial F_{2\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^2}=-\frac{\frac{\partial }{\partial t}B_z-\frac{\partial }{\partial y}E_x+\frac{\partial }{\partial x}E_y}{c}=0 \\ \frac{\partial F_{1\ 3}}{\partial x^0}+\frac{\partial F_{3\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^3}=\frac{\frac{\partial }{\partial t}B_y+\frac{\partial }{\partial z}E_x-\frac{\partial }{\partial x}E_z}{c}=0 \\ \frac{\partial F_{2\ 3}}{\partial x^0}+\frac{\partial F_{3\ 0}}{\partial x^2}+\frac{\partial F_{0\ 2}}{\partial x^3}=-\frac{\frac{\partial }{\partial t}B_x-\frac{\partial }{\partial z}E_y+\frac{\partial }{\partial y}E_z}{c}=0 \\ \frac{\partial F_{2\ 3}}{\partial x^1}+\frac{\partial F_{3\ 1}}{\partial x^2}+\frac{\partial F_{1\ 2}}{\partial x^3}=-\frac{\partial }{\partial x}B_x-\frac{\partial }{\partial y}B_y-\frac{\partial }{\partial z}B_z=0 \end{array} \]

  • 처음의 세 방정식은 패러데이의 법칙에 대한 각 성분에 해당한다

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\]

  • 네번째 방정식은 자기장에 대한 가우스의 법칙이다

\[\nabla \cdot \mathbf{B} = 0\]


방정식 \ref{aeg}

  • 양-밀스 방정식
  • 각 성분에 대해 풀어쓰면 다음이 얻어진다
  • \(\partial_{\mu}F^{\mu 0}=\mu_0 j^{0}\) 는 전기장에 대한 가우스 법칙

\[\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\]

  • \(\partial_{\mu}F^{\mu 1}=\mu_0 j^{1},\partial_{\mu}F^{\mu 2}=\mu_0 j^{2},\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}\)은 앙페르 법칙의 각 성분

\[\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \]


관련된 항목들



매스매티카 파일 및 계산 리소스


사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'four'}, {'OP': '*'}, {'LEMMA': 'gradient'}]