"추상대수학"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)   (→메타데이터:  새 문단)  | 
				|||
| (사용자 2명의 중간 판 13개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==개요==  | |
| − | |||
* 현대대수학의 기본적인 언어이자 대상인, 군, 환, 체의 기본적인 용어 및 이론을 공부함.  | * 현대대수학의 기본적인 언어이자 대상인, 군, 환, 체의 기본적인 용어 및 이론을 공부함.  | ||
* 갈루아 이론 - 군론을 통해 확장체 혹은 대수방정식의 해가 가진 대칭성을 들여다 봄.  | * 갈루아 이론 - 군론을 통해 확장체 혹은 대수방정식의 해가 가진 대칭성을 들여다 봄.  | ||
| − | + | ||
| − | + | ==선수 과목 또는 알고 있으면 좋은 것들==  | |
| − | *  고교 수준의 대수학  | + | *  고교 수준의 대수학  | 
** 다항식, 다항방정식  | ** 다항식, 다항방정식  | ||
| − | *  기초적인 선형대수학  | + | *  기초적인 선형대수학  | 
| − | **  기저, 차원, 선형사상, 행렬, 행렬식  | + | **  기저, 차원, 선형사상, 행렬, 행렬식  | 
| − | |||
| − | *  군(group)  | + | ==다루는 대상==  | 
| + | |||
| + | *  군(group)  | ||
** 대칭성을 기술하는 언어  | ** 대칭성을 기술하는 언어  | ||
** 항등원, 역원,  | ** 항등원, 역원,  | ||
| − | *  환(ring)  | + | *  환(ring)  | 
** 덧셈, 뺄셈, 곱하기가 가능하며, 덧셈과 곱셈 사이에 분배법칙이 성립.  | ** 덧셈, 뺄셈, 곱하기가 가능하며, 덧셈과 곱셈 사이에 분배법칙이 성립.  | ||
** 정수의 집합, 다항식의 집합, n x n 행렬들의 집합  | ** 정수의 집합, 다항식의 집합, n x n 행렬들의 집합  | ||
| − | *  체(field)  | + | *  체(field)  | 
** 실수, 복소수와 같이 사칙연산이 가능.  | ** 실수, 복소수와 같이 사칙연산이 가능.  | ||
| − | **  좀더 일반적으로 곱셈의 교환법칙을 가정하지 않는 경우는 division ring이라 부름.  | + | **  좀더 일반적으로 곱셈의 교환법칙을 가정하지 않는 경우는 division ring이라 부름.    | 
| − | + | ||
| + | ==중요한 개념 및 정리==  | ||
* [[순환군]]  | * [[순환군]]  | ||
| − | * [[  | + | * [[군론(group theory)|군론]]  | 
| − | * 유한생성 아벨군의 기본정리  | + | * [[유한생성 아벨군의 기본정리]]  | 
| + | * [[#|체론(field theory)]]  | ||
* ideal  | * ideal  | ||
* 유한체  | * 유한체  | ||
* 갈루아 체확장  | * 갈루아 체확장  | ||
| − | + | ||
| − | + | ==유명한 정리 혹은 생각할만한 문제==  | |
* [[대수학의 기본정리]](The fundamental theorem of algebras)의 대수적 증명은 가능한가?  | * [[대수학의 기본정리]](The fundamental theorem of algebras)의 대수적 증명은 가능한가?  | ||
| − | * [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]]  | + | * [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]]  | 
| − | **  아래 참고할만한 자료  | + | **  아래 참고할만한 자료  | 
*** [http://www.jstor.org/stable/2315349 The Impossibility of a Division Algebra of Vectors in Three Dimensional Space]  | *** [http://www.jstor.org/stable/2315349 The Impossibility of a Division Algebra of Vectors in Three Dimensional Space]  | ||
| − | *** [http://www.jstor.org/stable/2689449 Hamilton's Discovery of Quaternions]  | + | *** [http://www.jstor.org/stable/2689449 Hamilton's Discovery of Quaternions]  | 
* [[가우스와 정17각형의 작도]]  | * [[가우스와 정17각형의 작도]]  | ||
* [[그리스 3대 작도 불가능문제]]를 군론을 통해 해결할 수 있음.  | * [[그리스 3대 작도 불가능문제]]를 군론을 통해 해결할 수 있음.  | ||
* [[5차방정식과 근의 공식|일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명]]  | * [[5차방정식과 근의 공식|일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명]]  | ||
| − | *  유클리드 도메인이 아닌 PID  | + | *  유클리드 도메인이 아닌 PID  | 
| − | **  아래 참고할만한 자료  | + | **  아래 참고할만한 자료  | 
*** [http://www.jstor.org/stable/2322908 A Principal Ideal Domain That Is Not a Euclidean Domain]  | *** [http://www.jstor.org/stable/2322908 A Principal Ideal Domain That Is Not a Euclidean Domain]  | ||
* [[7개의 프리즈 패턴]]  | * [[7개의 프리즈 패턴]]  | ||
* [[17 Plane Crystallographic groups]]  | * [[17 Plane Crystallographic groups]]  | ||
| − | + | ||
| − | + | ==다른 과목과의 관련성==  | |
* [[초등정수론|정수론]]  | * [[초등정수론|정수론]]  | ||
* [[선형대수학]]  | * [[선형대수학]]  | ||
| − | * [[리만곡면론|대수곡선론]]  | + | * [[리만곡면론|대수곡선론]]  | 
** 대수기하학 입문으로서의 대수곡선론  | ** 대수기하학 입문으로서의 대수곡선론  | ||
| − | * [[대수적위상수학]]  | + | * [[대수적위상수학]]  | 
| − | **  군론  | + | **  군론  | 
*** fundamental group을 정의하기 위해 필요  | *** fundamental group을 정의하기 위해 필요  | ||
*** covering space의 deck transformation group  | *** covering space의 deck transformation group  | ||
| − | **  유한생성 아벨군의 기본정리  | + | **  유한생성 아벨군의 기본정리  | 
*** 호몰로지를 이해하기 위해 필요  | *** 호몰로지를 이해하기 위해 필요  | ||
| − | *  조합론  | + | *  조합론  | 
** 번사이드 보조정리  | ** 번사이드 보조정리  | ||
| − | + | ||
| − | + | ||
| − | + | ==관련된 대학원 과목 또는 더 공부하면 좋은 것들==  | |
* 펠릭스 클라인의 '정이십면체와 5차방정식'  | * 펠릭스 클라인의 '정이십면체와 5차방정식'  | ||
| − | *  semisimple rings  | + | *  semisimple rings  | 
| − | ** Artin–Wedderburn theorem  | + | ** [[아틴-웨더번 정리(Artin–Wedderburn theorem)]]  | 
* 유한군의 표현론  | * 유한군의 표현론  | ||
* [[대수적수론|대수적정수론]]  | * [[대수적수론|대수적정수론]]  | ||
* [[Classical groups]]  | * [[Classical groups]]  | ||
| − | |||
| − | + | ==매스매티카 파일 및 계산 리소스==  | |
| + | * http://homepage.math.uiowa.edu/~goodman/22m121.dir/2006/22m121.html   | ||
| + | |||
| + | |||
| + | ==표준적인 교과서==  | ||
| + | |||
| + | * John B. Fraleigh [http://www.amazon.com/First-Course-Abstract-Algebra-7th/dp/0201763907 A First Course in Abstract Algebra]  | ||
| + | |||
| + | |||
| + | ==관련도서==  | ||
| + | |||
| + | * Israel Kleiner [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra]  | ||
| + | |||
| + | |||
| − | + | ==관련논문==  | |
| − | |||
| − | <  | + | * I. G. Bashmakova and A. N. Rudakov [http://www.jstor.org/stable/2975015 The Evolution of Algebra 1800-1870] , <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 3 (Mar., 1995), pp. 266-270  | 
| + | * [http://www.jstor.org/stable/2690312 The Evolution of Group Theory: A Brief Survey]  | ||
| + | ** Israel Kleiner, <cite>Mathematics Magazine</cite>, Vol. 59, No. 4 (Oct., 1986), pp. 195-215  | ||
| + | * [http://www.jstor.org/stable/2690624 A History of Lagrange's Theorem on Groups]  | ||
| + | ** Richard L. Roth, <cite>Mathematics Magazine</cite>, Vol. 74, No. 2 (Apr., 2001), pp. 99-108                                | ||
| + | * [http://www.jstor.org/stable/2689449 Hamilton's Discovery of Quaternions]  | ||
| + | ** B. L. van der Waerden, <cite>Mathematics Magazine</cite>, Vol. 49, No. 5 (Nov., 1976), pp. 227-234  | ||
| + | * [http://www.jstor.org/stable/2974935 The Genesis of the Abstract Ring Concept]  | ||
| + | ** Israel Kleiner, <cite>The American Mathematical Monthly</cite>, Vol. 103, No. 5 (May, 1996), pp. 417-424  | ||
| + | * [http://www.jstor.org/stable/2691011 A Historically Focused Course in Abstract Algebra]  | ||
| + | ** Israel Kleiner, <cite>Mathematics Magazine</cite>, Vol. 71, No. 2 (Apr., 1998), pp. 105-111  | ||
| + | * [http://www.jstor.org/stable/2325119 Galois Theory for Beginners]  | ||
| + | ** John Stillwell, <cite>The American Mathematical Monthly</cite>, Vol. 101, No. 1 (Jan., 1994), pp. 22-27  | ||
| + | * [http://www.jstor.org/stable/2974763 Niels Hendrik Abel and Equations of the Fifth Degree]  | ||
| + | ** Michael I. Rosen, <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 6 (Jun. - Jul., 1995), pp. 495-505  | ||
| + | * [http://www.jstor.org/stable/2322908 A Principal Ideal Domain That Is Not a Euclidean Domain]  | ||
| + | ** Oscar A. Campoli, <cite>The American Mathematical Monthly</cite>, Vol. 95, No. 9 (Nov., 1988), pp. 868-871  | ||
| + | * [http://www.jstor.org/stable/2974984 Principal Ideal Domains are Almost Euclidean]  | ||
| + | ** John Greene, <cite>The American Mathematical Monthly</cite>, Vol. 104, No. 2 (Feb., 1997), pp. 154-156  | ||
| + | [[분류:교과목]]  | ||
| + | [[분류:추상대수학]]  | ||
| − | + | == 노트 ==  | |
| − | |||
| − | + | ===위키데이터===  | |
| + | * ID :  [https://www.wikidata.org/wiki/Q159943 Q159943]  | ||
| + | ===말뭉치===  | ||
| + | # Theory and Applications is an open source textbook designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner.<ref name="ref_32c6abca">[http://abstract.ups.edu/ Abstract Algebra: Theory and Applications (A Free Textbook)]</ref>  | ||
| + | # Five of them will be taking college courses in differential equations, abstract algebra and discrete mathematics as 10th-graders at Pasadena High School this fall.<ref name="ref_cfa4eaf5">[https://www.merriam-webster.com/dictionary/abstract%20algebra Definition of Abstract Algebra by Merriam-Webster]</ref>  | ||
| + | # At the height of her mathematical powers, doing new work on abstract algebra, Noether died after an operation on an ovarian cyst.<ref name="ref_cfa4eaf5" />  | ||
| + | # If the operations satisfy familiar arithmetic rules (such as associativity, commutativity, and distributivity) the set will have a particularly “rich” algebraic structure.<ref name="ref_fd0599a4">[https://www.britannica.com/science/modern-algebra Modern algebra | mathematics]</ref>  | ||
| + | # Sets with the richest algebraic structure are known as fields.<ref name="ref_fd0599a4" />  | ||
| + | # In fact, finite fields motivated the early development of abstract algebra.<ref name="ref_fd0599a4" />  | ||
| + | # Abstract algebra is the set of advanced topics of algebra that deal with abstract algebraic structures rather than the usual number systems.<ref name="ref_53cb43d7">[https://mathworld.wolfram.com/AbstractAlgebra.html Abstract Algebra -- from Wolfram MathWorld]</ref>  | ||
| + | # discrete mathematics are sometimes considered branches of abstract algebra.<ref name="ref_53cb43d7" />  | ||
| + | # In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures.<ref name="ref_f9c755ac">[https://en.wikipedia.org/wiki/Abstract_algebra Abstract algebra]</ref>  | ||
| + | # Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras.<ref name="ref_f9c755ac" />  | ||
| + | # Algebraic structures, with their associated homomorphisms, form mathematical categories.<ref name="ref_f9c755ac" />  | ||
| + | # As in other parts of mathematics, concrete problems and examples have played important roles in the development of abstract algebra.<ref name="ref_f9c755ac" />  | ||
| + | # But the richness of abstract algebra comes from the idea that you can use abstractions of a concept that are easy to understand to explain more complex behavior!<ref name="ref_9d850f01">[https://math.stackexchange.com/questions/855828/what-is-abstract-algebra-essentially What is Abstract Algebra essentially?]</ref>  | ||
| + | # This site contains many of the definitions and theorems from the area of mathematics generally called abstract algebra.<ref name="ref_84fa5ed8">[http://www.math.niu.edu/~beachy/aaol/contents.html ABSTRACT ALGEBRA ON LINE: Contents]</ref>  | ||
| + | # It is intended for undergraduate students taking an abstract algebra class at the junior/senior level, as well as for students taking their first graduate algebra course.<ref name="ref_84fa5ed8" />  | ||
| + | # Algebra has also played a significant role in clarifying and highlighting notions of logic, at the core of exact philosophy for millennia.<ref name="ref_6874edf0">[https://plato.stanford.edu/entries/algebra/ Algebra (Stanford Encyclopedia of Philosophy)]</ref>  | ||
| + | # A number of branches of mathematics have found algebra such an effective tool that they have spawned algebraic subbranches.<ref name="ref_6874edf0" />  | ||
| + | # Groups, rings and fields only scratch the surface of abstract algebra.<ref name="ref_6874edf0" />  | ||
| + | # Boolean algebras abstract the algebra of sets.<ref name="ref_6874edf0" />  | ||
| + | # "Abstract Algebra" is a clearly written, self-contained basic algebra text for graduate students, with a generous amount of additional material that suggests the scope of contemporary algebra.<ref name="ref_a30cf7c2">[https://www.springer.com/gp/book/9780387715674 Pierre Antoine Grillet]</ref>  | ||
| + | # The last chapters, on universal algebras and categories, including tripleability, give valuable general views of algebra.<ref name="ref_a30cf7c2" />  | ||
| + | # This book is on abstract algebra (abstract algebraic systems), an advanced set of topics related to algebra, including groups, rings, ideals, fields, and more.<ref name="ref_cbc73e9b">[https://en.wikibooks.org/wiki/Abstract_Algebra Wikibooks, open books for an open world]</ref>  | ||
| + | # Primarily, we will follow Wikibooks' Abstract Algebra textbook.<ref name="ref_7cd593b6">[https://en.wikiversity.org/wiki/Introduction_to_Abstract_Algebra Introduction to Abstract Algebra]</ref>  | ||
| + | # A good textbook to pick up is Topics in Algebra by I.N. Herstein.<ref name="ref_7cd593b6" />  | ||
| + | # Shed the societal and cultural narratives holding you back and let step-by-step A First Course in Abstract Algebra textbook solutions reorient your old paradigms.<ref name="ref_17f28728">[https://www.slader.com/textbook/9780201763904-a-first-course-in-abstract-algebra-7th-edition/ Solutions to A First Course in Abstract Algebra (9780201763904) :: Homework Help and Answers :: Slader]</ref>  | ||
| + | # Unlock your A First Course in Abstract Algebra PDF (Profound Dynamic Fulfillment) today.<ref name="ref_17f28728" />  | ||
| + | # This course develops in the theme of "Arithmetic congruence, and abstract algebraic structures.<ref name="ref_ceda1da5">[https://math.gatech.edu/courses/math/4107 Georgia Institute of Technology]</ref>  | ||
| + | # This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences.<ref name="ref_8424066c">[https://www.degruyter.com/view/title/319702?language=en Abstract Algebra]</ref>  | ||
| + | # Abstract Algebra with Applications provides a friendly and concise introduction to algebra, with an emphasis on its uses in the modern world.<ref name="ref_2eef2cc6">[https://www.cambridge.org/core_title/gb/491143 Abstract algebra applications]</ref>  | ||
| + | # Perhaps no other subject of undergraduate mathematics is as challenging to learn (and to teach) as abstract algebra.<ref name="ref_2eef2cc6" />  | ||
| + | # Many of the applications of modern algebra are explained in a thoughtful way that will help motivate students to study abstract concepts.<ref name="ref_2eef2cc6" />  | ||
| + | # Abstract Algebra by Dummit & Foote is a standard textbook used by colleges and universities.<ref name="ref_99735e06">[https://www.socratica.com/subject/abstract-algebra Abstract Algebra]</ref>  | ||
| + | # It covers all the topics for a solid first course in Abstract Algebra.<ref name="ref_99735e06" />  | ||
| + | # Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication.<ref name="ref_c51bd267">[https://www.worldscientific.com/worldscibooks/10.1142/9853 Abstract Algebra]</ref>  | ||
| + | # Noether went into research and more or less invented the field of abstract algebra.<ref name="ref_92aa58b2">[https://cosmosmagazine.com/physics/woman-who-invented-abstract-algebra/ The inventor of abstract algebra]</ref>  | ||
| + | # The main aim of the course is to introduce you to basic concepts from abstract algebra, especially the notion of a group.<ref name="ref_eea5599c">[https://www.kcl.ac.uk/study/courses-data/modules/4/Introduction-To-Abstract-Algebra-4ccm121a Introduction To Abstract Algebra]</ref>  | ||
| + | # The course will help prepare you for further study in abstract algebra as well as familiarize you with tools essential in many other areas of mathematics.<ref name="ref_eea5599c" />  | ||
| + | # Computational Problems in Abstract Algebra provides information pertinent to the application of computers to abstract algebra.<ref name="ref_213c6e05">[https://www.sciencedirect.com/book/9780080129754/computational-problems-in-abstract-algebra Computational Problems in Abstract Algebra]</ref>  | ||
| + | # The final chapter deals with the computational problems related to invariant factors in linear algebra.<ref name="ref_213c6e05" />  | ||
| + | # Mathematicians as well as students of algebra will find this book useful.<ref name="ref_213c6e05" />  | ||
| + | ===소스===  | ||
| + |  <references />  | ||
| − | + | == 메타데이터 ==  | |
| − | *   | + | ===위키데이터===  | 
| − | + | * ID :  [https://www.wikidata.org/wiki/Q159943 Q159943]  | |
| − | + | ===Spacy 패턴 목록===  | |
| − | + | * [{'LOWER': 'abstract'}, {'LEMMA': 'algebra'}]  | |
| − | + | * [{'LOWER': 'modern'}, {'LEMMA': 'algebra'}]  | |
| − | + | * [{'LEMMA': 'algebra'}]  | |
| − | * [  | + | * [{'LEMMA': 'algebraic'}]  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
2021년 2월 17일 (수) 05:01 기준 최신판
개요
- 현대대수학의 기본적인 언어이자 대상인, 군, 환, 체의 기본적인 용어 및 이론을 공부함.
 - 갈루아 이론 - 군론을 통해 확장체 혹은 대수방정식의 해가 가진 대칭성을 들여다 봄.
 
 
선수 과목 또는 알고 있으면 좋은 것들
- 고교 수준의 대수학
- 다항식, 다항방정식
 
 - 기초적인 선형대수학
- 기저, 차원, 선형사상, 행렬, 행렬식
 
 
다루는 대상
- 군(group)
- 대칭성을 기술하는 언어
 - 항등원, 역원,
 
 - 환(ring)
- 덧셈, 뺄셈, 곱하기가 가능하며, 덧셈과 곱셈 사이에 분배법칙이 성립.
 - 정수의 집합, 다항식의 집합, n x n 행렬들의 집합
 
 - 체(field)
- 실수, 복소수와 같이 사칙연산이 가능.
 - 좀더 일반적으로 곱셈의 교환법칙을 가정하지 않는 경우는 division ring이라 부름.
 
 
중요한 개념 및 정리
- 순환군
 - 군론
 - 유한생성 아벨군의 기본정리
 - 체론(field theory)
 - ideal
 - 유한체
 - 갈루아 체확장
 
 
유명한 정리 혹은 생각할만한 문제
- 대수학의 기본정리(The fundamental theorem of algebras)의 대수적 증명은 가능한가?
 - 해밀턴의 사원수
 - 가우스와 정17각형의 작도
 - 그리스 3대 작도 불가능문제를 군론을 통해 해결할 수 있음.
 - 일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명
 - 유클리드 도메인이 아닌 PID
 - 7개의 프리즈 패턴
 - 17 Plane Crystallographic groups
 
 
다른 과목과의 관련성
- 정수론
 - 선형대수학
 - 대수곡선론
- 대수기하학 입문으로서의 대수곡선론
 
 - 대수적위상수학
- 군론
- fundamental group을 정의하기 위해 필요
 - covering space의 deck transformation group
 
 - 유한생성 아벨군의 기본정리
- 호몰로지를 이해하기 위해 필요
 
 
 - 군론
 - 조합론
- 번사이드 보조정리
 
 
 
 
관련된 대학원 과목 또는 더 공부하면 좋은 것들
- 펠릭스 클라인의 '정이십면체와 5차방정식'
 - semisimple rings
 - 유한군의 표현론
 - 대수적정수론
 - Classical groups
 
매스매티카 파일 및 계산 리소스
표준적인 교과서
- John B. Fraleigh A First Course in Abstract Algebra
 
관련도서
- Israel Kleiner A History of Abstract Algebra
 
 
관련논문
- I. G. Bashmakova and A. N. Rudakov The Evolution of Algebra 1800-1870 , The American Mathematical Monthly, Vol. 102, No. 3 (Mar., 1995), pp. 266-270
 - The Evolution of Group Theory: A Brief Survey
- Israel Kleiner, Mathematics Magazine, Vol. 59, No. 4 (Oct., 1986), pp. 195-215
 
 - A History of Lagrange's Theorem on Groups
- Richard L. Roth, Mathematics Magazine, Vol. 74, No. 2 (Apr., 2001), pp. 99-108
 
 - Hamilton's Discovery of Quaternions
- B. L. van der Waerden, Mathematics Magazine, Vol. 49, No. 5 (Nov., 1976), pp. 227-234
 
 - The Genesis of the Abstract Ring Concept
- Israel Kleiner, The American Mathematical Monthly, Vol. 103, No. 5 (May, 1996), pp. 417-424
 
 - A Historically Focused Course in Abstract Algebra
- Israel Kleiner, Mathematics Magazine, Vol. 71, No. 2 (Apr., 1998), pp. 105-111
 
 - Galois Theory for Beginners
- John Stillwell, The American Mathematical Monthly, Vol. 101, No. 1 (Jan., 1994), pp. 22-27
 
 - Niels Hendrik Abel and Equations of the Fifth Degree
- Michael I. Rosen, The American Mathematical Monthly, Vol. 102, No. 6 (Jun. - Jul., 1995), pp. 495-505
 
 - A Principal Ideal Domain That Is Not a Euclidean Domain
- Oscar A. Campoli, The American Mathematical Monthly, Vol. 95, No. 9 (Nov., 1988), pp. 868-871
 
 - Principal Ideal Domains are Almost Euclidean
- John Greene, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 154-156
 
 
노트
위키데이터
- ID : Q159943
 
말뭉치
- Theory and Applications is an open source textbook designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner.[1]
 - Five of them will be taking college courses in differential equations, abstract algebra and discrete mathematics as 10th-graders at Pasadena High School this fall.[2]
 - At the height of her mathematical powers, doing new work on abstract algebra, Noether died after an operation on an ovarian cyst.[2]
 - If the operations satisfy familiar arithmetic rules (such as associativity, commutativity, and distributivity) the set will have a particularly “rich” algebraic structure.[3]
 - Sets with the richest algebraic structure are known as fields.[3]
 - In fact, finite fields motivated the early development of abstract algebra.[3]
 - Abstract algebra is the set of advanced topics of algebra that deal with abstract algebraic structures rather than the usual number systems.[4]
 - discrete mathematics are sometimes considered branches of abstract algebra.[4]
 - In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures.[5]
 - Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras.[5]
 - Algebraic structures, with their associated homomorphisms, form mathematical categories.[5]
 - As in other parts of mathematics, concrete problems and examples have played important roles in the development of abstract algebra.[5]
 - But the richness of abstract algebra comes from the idea that you can use abstractions of a concept that are easy to understand to explain more complex behavior![6]
 - This site contains many of the definitions and theorems from the area of mathematics generally called abstract algebra.[7]
 - It is intended for undergraduate students taking an abstract algebra class at the junior/senior level, as well as for students taking their first graduate algebra course.[7]
 - Algebra has also played a significant role in clarifying and highlighting notions of logic, at the core of exact philosophy for millennia.[8]
 - A number of branches of mathematics have found algebra such an effective tool that they have spawned algebraic subbranches.[8]
 - Groups, rings and fields only scratch the surface of abstract algebra.[8]
 - Boolean algebras abstract the algebra of sets.[8]
 - "Abstract Algebra" is a clearly written, self-contained basic algebra text for graduate students, with a generous amount of additional material that suggests the scope of contemporary algebra.[9]
 - The last chapters, on universal algebras and categories, including tripleability, give valuable general views of algebra.[9]
 - This book is on abstract algebra (abstract algebraic systems), an advanced set of topics related to algebra, including groups, rings, ideals, fields, and more.[10]
 - Primarily, we will follow Wikibooks' Abstract Algebra textbook.[11]
 - A good textbook to pick up is Topics in Algebra by I.N. Herstein.[11]
 - Shed the societal and cultural narratives holding you back and let step-by-step A First Course in Abstract Algebra textbook solutions reorient your old paradigms.[12]
 - Unlock your A First Course in Abstract Algebra PDF (Profound Dynamic Fulfillment) today.[12]
 - This course develops in the theme of "Arithmetic congruence, and abstract algebraic structures.[13]
 - This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences.[14]
 - Abstract Algebra with Applications provides a friendly and concise introduction to algebra, with an emphasis on its uses in the modern world.[15]
 - Perhaps no other subject of undergraduate mathematics is as challenging to learn (and to teach) as abstract algebra.[15]
 - Many of the applications of modern algebra are explained in a thoughtful way that will help motivate students to study abstract concepts.[15]
 - Abstract Algebra by Dummit & Foote is a standard textbook used by colleges and universities.[16]
 - It covers all the topics for a solid first course in Abstract Algebra.[16]
 - Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication.[17]
 - Noether went into research and more or less invented the field of abstract algebra.[18]
 - The main aim of the course is to introduce you to basic concepts from abstract algebra, especially the notion of a group.[19]
 - The course will help prepare you for further study in abstract algebra as well as familiarize you with tools essential in many other areas of mathematics.[19]
 - Computational Problems in Abstract Algebra provides information pertinent to the application of computers to abstract algebra.[20]
 - The final chapter deals with the computational problems related to invariant factors in linear algebra.[20]
 - Mathematicians as well as students of algebra will find this book useful.[20]
 
소스
- ↑ Abstract Algebra: Theory and Applications (A Free Textbook)
 - ↑ 2.0 2.1 Definition of Abstract Algebra by Merriam-Webster
 - ↑ 3.0 3.1 3.2 Modern algebra | mathematics
 - ↑ 4.0 4.1 Abstract Algebra -- from Wolfram MathWorld
 - ↑ 5.0 5.1 5.2 5.3 Abstract algebra
 - ↑ What is Abstract Algebra essentially?
 - ↑ 7.0 7.1 ABSTRACT ALGEBRA ON LINE: Contents
 - ↑ 8.0 8.1 8.2 8.3 Algebra (Stanford Encyclopedia of Philosophy)
 - ↑ 9.0 9.1 Pierre Antoine Grillet
 - ↑ Wikibooks, open books for an open world
 - ↑ 11.0 11.1 Introduction to Abstract Algebra
 - ↑ 12.0 12.1 Solutions to A First Course in Abstract Algebra (9780201763904) :: Homework Help and Answers :: Slader
 - ↑ Georgia Institute of Technology
 - ↑ Abstract Algebra
 - ↑ 15.0 15.1 15.2 Abstract algebra applications
 - ↑ 16.0 16.1 Abstract Algebra
 - ↑ Abstract Algebra
 - ↑ The inventor of abstract algebra
 - ↑ 19.0 19.1 Introduction To Abstract Algebra
 - ↑ 20.0 20.1 20.2 Computational Problems in Abstract Algebra
 
메타데이터
위키데이터
- ID : Q159943
 
Spacy 패턴 목록
- [{'LOWER': 'abstract'}, {'LEMMA': 'algebra'}]
 - [{'LOWER': 'modern'}, {'LEMMA': 'algebra'}]
 - [{'LEMMA': 'algebra'}]
 - [{'LEMMA': 'algebraic'}]