"푸앵카레 unit disk 모델"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 26개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* [[쌍곡기하학]]의 모델이 되는 리만다양체
 +
* [[푸앵카레 상반평면 모델]]과 동형 (리만다양체로서 또는 리만곡면으로서)
 +
 +
 +
 +
 +
==정의==
 +
 +
* <math>\mathbb{D}^2=\{z=x+iy\in \mathbb{C}:|z|=\sqrt{x^2+y^2} < 1 \}</math>
 +
 +
 +
 +
==제1기본형식==
 +
 +
*  리만 메트릭:<math>ds^2=\frac{4(dx^2+dy^2)}{\left(1-x^2-y^2\right)^2}=\frac{4dzd\overline{z}}{(1-|z|^2)^2}</math>
 +
* <math>E=\frac{4}{\left(1-x^2-y^2\right)^2}</math>
 +
* <math>F=0</math>
 +
* <math>G=\frac{4}{\left(1-x^2-y^2\right)^2}</math>
 +
 +
 +
 +
 +
 +
==크리스토펠 기호==
 +
 +
* [[크리스토펠 기호]]
 +
:<math>\begin{array}{ll}  \Gamma _ {11}^1 & -\frac{2 x}{-1+x^2+y^2} \\  \Gamma _ {12}^1 & -\frac{2 y}{-1+x^2+y^2} \\  \Gamma _ {21}^1 & -\frac{2 y}{-1+x^2+y^2} \\  \Gamma _ {22}^1 & \frac{2 x}{-1+x^2+y^2} \\  \Gamma _ {11}^2 & \frac{2 y}{-1+x^2+y^2} \\  \Gamma _ {12}^2 & -\frac{2 x}{-1+x^2+y^2} \\  \Gamma _ {21}^2 & -\frac{2 x}{-1+x^2+y^2} \\  \Gamma _ {22}^2 & -\frac{2 y}{-1+x^2+y^2} \end{array}</math>
 +
* [[가우스 곡률|가우스곡률]] 은 -1 이다
 +
 +
 +
 +
 +
 +
==라플라시안==
 +
 +
* [[라플라시안(Laplacian)|라플라시안]]:<math>\Delta f=\frac{1}{4} \left(1-x^2-y^2\right)^2\left(\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}\right)</math> 
 +
 +
 +
 +
==측지선==
 +
 +
* [[측지선]]이 만족시키는 미분방정식은 다음과 같다
 +
:<math>\frac{d^2 x}{dt^2} + \Gamma^{1}_{~1 2 }\frac{dx }{dt}\frac{dy }{dt} +\Gamma^{1}_{~2 1}\frac{dx }{dt}\frac{dy }{dt}= 0</math>
 +
:<math>\frac{d^2 y }{dt^2} + \Gamma^{2}_{~1 1 }\frac{dx }{dt}\frac{dx }{dt}+\Gamma^{2}_ {~2 2}\frac{dy }{dt}\frac{dy }{dt} = 0</math>
 +
*  계산된 크리스토펠 심볼을 사용하면:<math>x''(t)+\frac{2 x y'(t)^2}{x^2+y^2-1}-\frac{2 x x'(t)^2}{x^2+y^2-1}-\frac{4 y x'(t) y'(t)}{x^2+y^2-1}=0</math>:<math>y''(t)-\frac{2 y y'(t)^2}{x^2+y^2-1}+\frac{2 y x'(t)^2}{x^2+y^2-1}-\frac{4 x x'(t) y'(t)}{x^2+y^2-1}=0</math>
 +
 +
 +
 +
 +
 +
 +
 +
==리만 텐서==
 +
 +
<math>\begin{array}{ll}  \begin{array}{ll}  R_ {111}^1 & 0 \\  R_ {112}^1 & 0 \end{array}  &  \begin{array}{ll}  R_ {121}^1 & 0 \\  R_ {122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_ {211}^1 & 0 \\  R_ {212}^1 & -\frac{4}{\left(x^2+y^2-1\right)^2} \end{array}  &  \begin{array}{ll}  R_ {221}^1 & \frac{4}{\left(x^2+y^2-1\right)^2} \\  R_ {222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_ {111}^2 & 0 \\  R_ {112}^2 & \frac{4}{\left(x^2+y^2-1\right)^2} \end{array}  &  \begin{array}{ll}  R_ {121}^2 & -\frac{4}{\left(x^2+y^2-1\right)^2} \\  R_ {122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_ {211}^2 & 0 \\  R_ {212}^2 & 0 \end{array}  &  \begin{array}{ll}  R_ {221}^2 & 0 \\  R_ {222}^2 & 0 \end{array}  \end{array}</math>
 +
 +
 +
 +
 +
 +
==역사==
 +
 +
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
* [[수학사 연표]]
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
* http://egl.math.umd.edu/software.html
 +
* [http://www-users.math.umd.edu/%7Erfhoban/Shadows/PoincareUnitDisk.nb http://www-users.math.umd.edu/~rfhoban/Shadows/PoincareUnitDisk.nb]
 +
 +
 +
==관련된 항목들==
 +
 +
* [[케일리 뫼비우스 변환]]
 +
* [[서로 만나는 두 원이 이루는 각도]]
 +
* [[에셔 스타일의 그림그리기]]
 +
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxcFpvZmhCal9QSDQ/edit
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
* [http://en.wikipedia.org/wiki/Poincar%C3%A9_disk_model http://en.wikipedia.org/wiki/Poincaré_disk_model]
 +
* [http://en.wikipedia.org/wiki/Poincar%C3%A9_metric http://en.wikipedia.org/wiki/Poincaré_metric]
 +
 +
 +
 +
 +
==리뷰논문, 에세이, 강의노트==
 +
 +
* [http://www.springerlink.com/content/p851285722082v63/ Henri Poincaré and the Disc Model of non-Euclidean Geometry]
 +
[[분류:미분기하학]]
 +
[[분류:곡면]]
 +
[[분류:쌍곡기하학]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2617832 Q2617832]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'poincaré'}, {'LOWER': 'disk'}, {'LEMMA': 'model'}]
 +
* [{'LOWER': 'poincaré'}, {'LOWER': 'ball'}, {'LEMMA': 'model'}]
 +
* [{'LOWER': 'conformal'}, {'LOWER': 'disk'}, {'LEMMA': 'model'}]
 +
* [{'LOWER': 'poincaré'}, {'LOWER': 'disc'}, {'LEMMA': 'model'}]
 +
* [{'LOWER': 'conformal'}, {'LOWER': 'disc'}, {'LEMMA': 'model'}]
 +
* [{'LOWER': 'poincare'}, {'LOWER': 'disk'}, {'LEMMA': 'model'}]
 +
* [{'LOWER': 'poincare'}, {'LOWER': 'ball'}, {'LEMMA': 'model'}]
 +
* [{'LOWER': 'poincare'}, {'LOWER': 'disc'}, {'LEMMA': 'model'}]

2021년 2월 17일 (수) 06:07 기준 최신판

개요



정의

  • \(\mathbb{D}^2=\{z=x+iy\in \mathbb{C}:|z|=\sqrt{x^2+y^2} < 1 \}\)


제1기본형식

  • 리만 메트릭\[ds^2=\frac{4(dx^2+dy^2)}{\left(1-x^2-y^2\right)^2}=\frac{4dzd\overline{z}}{(1-|z|^2)^2}\]
  • \(E=\frac{4}{\left(1-x^2-y^2\right)^2}\)
  • \(F=0\)
  • \(G=\frac{4}{\left(1-x^2-y^2\right)^2}\)



크리스토펠 기호

\[\begin{array}{ll} \Gamma _ {11}^1 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {12}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {21}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {22}^1 & \frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {11}^2 & \frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {12}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {21}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {22}^2 & -\frac{2 y}{-1+x^2+y^2} \end{array}\]



라플라시안

  • 라플라시안\[\Delta f=\frac{1}{4} \left(1-x^2-y^2\right)^2\left(\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}\right)\]


측지선

  • 측지선이 만족시키는 미분방정식은 다음과 같다

\[\frac{d^2 x}{dt^2} + \Gamma^{1}_{~1 2 }\frac{dx }{dt}\frac{dy }{dt} +\Gamma^{1}_{~2 1}\frac{dx }{dt}\frac{dy }{dt}= 0\] \[\frac{d^2 y }{dt^2} + \Gamma^{2}_{~1 1 }\frac{dx }{dt}\frac{dx }{dt}+\Gamma^{2}_ {~2 2}\frac{dy }{dt}\frac{dy }{dt} = 0\]

  • 계산된 크리스토펠 심볼을 사용하면\[x''(t)+\frac{2 x y'(t)^2}{x^2+y^2-1}-\frac{2 x x'(t)^2}{x^2+y^2-1}-\frac{4 y x'(t) y'(t)}{x^2+y^2-1}=0\]\[y''(t)-\frac{2 y y'(t)^2}{x^2+y^2-1}+\frac{2 y x'(t)^2}{x^2+y^2-1}-\frac{4 x x'(t) y'(t)}{x^2+y^2-1}=0\]




리만 텐서

\(\begin{array}{ll} \begin{array}{ll} R_ {111}^1 & 0 \\ R_ {112}^1 & 0 \end{array} & \begin{array}{ll} R_ {121}^1 & 0 \\ R_ {122}^1 & 0 \end{array} \\ \begin{array}{ll} R_ {211}^1 & 0 \\ R_ {212}^1 & -\frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_ {221}^1 & \frac{4}{\left(x^2+y^2-1\right)^2} \\ R_ {222}^1 & 0 \end{array} \\ \begin{array}{ll} R_ {111}^2 & 0 \\ R_ {112}^2 & \frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_ {121}^2 & -\frac{4}{\left(x^2+y^2-1\right)^2} \\ R_ {122}^2 & 0 \end{array} \\ \begin{array}{ll} R_ {211}^2 & 0 \\ R_ {212}^2 & 0 \end{array} & \begin{array}{ll} R_ {221}^2 & 0 \\ R_ {222}^2 & 0 \end{array} \end{array}\)



역사



메모


관련된 항목들


매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'poincaré'}, {'LOWER': 'disk'}, {'LEMMA': 'model'}]
  • [{'LOWER': 'poincaré'}, {'LOWER': 'ball'}, {'LEMMA': 'model'}]
  • [{'LOWER': 'conformal'}, {'LOWER': 'disk'}, {'LEMMA': 'model'}]
  • [{'LOWER': 'poincaré'}, {'LOWER': 'disc'}, {'LEMMA': 'model'}]
  • [{'LOWER': 'conformal'}, {'LOWER': 'disc'}, {'LEMMA': 'model'}]
  • [{'LOWER': 'poincare'}, {'LOWER': 'disk'}, {'LEMMA': 'model'}]
  • [{'LOWER': 'poincare'}, {'LOWER': 'ball'}, {'LEMMA': 'model'}]
  • [{'LOWER': 'poincare'}, {'LOWER': 'disc'}, {'LEMMA': 'model'}]