"해석적확장(analytic continuation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 3개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | ==이 항목의 | + | ==이 항목의 스프링노트 원문주소== |
* [[해석적확장(analytic continuation)]] | * [[해석적확장(analytic continuation)]] | ||
− | + | ||
− | + | ||
==개요== | ==개요== | ||
− | + | ||
− | + | ||
==예== | ==예== | ||
− | * [[자코비 세타함수]] | + | * [[자코비 세타함수]] 를 다음과 같이 복소수 <math>x</math> 에 대한 함수로 보면, <math>|x|<1</math>을 넘어서 해석함수로 확장시킬 수 없음:<math>\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}</math> |
− | + | ||
==재미있는 사실== | ==재미있는 사실== | ||
− | + | ||
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | * 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
− | + | ||
− | + | ||
==역사== | ==역사== | ||
− | * [[ | + | * [[수학사 연표]] |
− | + | ||
− | + | ||
==메모== | ==메모== | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
* [[리만제타함수]] | * [[리만제타함수]] | ||
− | * | + | * |
− | + | ||
− | + | ||
==수학용어번역== | ==수학용어번역== | ||
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
69번째 줄: | 69번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
− | + | ||
− | + | ||
==관련논문== | ==관련논문== | ||
81번째 줄: | 81번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
==블로그== | ==블로그== | ||
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
+ | [[분류:복소함수론]] |
2020년 12월 28일 (월) 03:11 기준 최신판
이 항목의 스프링노트 원문주소
개요
예
- 자코비 세타함수 를 다음과 같이 복소수 \(x\) 에 대한 함수로 보면, \(|x|<1\)을 넘어서 해석함수로 확장시킬 수 없음\[\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}\]
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문