"역함수를 이용한 치환적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
2번째 줄: 2번째 줄:
  
 
* 역함수를 이용한 치환적분법
 
* 역함수를 이용한 치환적분법
 +
:<math>\int f(x)\,dx=xf(x)-\int xf'(x)\,dx+xf(x)-\int f^{-1}(f(x))f'(x)\,dx+xf(x)-G(f(x))</math>
 +
여기서 <math>G(x)= \int f^{-1}(x)\,dx</math>
  
 
+
 
 
<math>\int f(x)\,dx=xf(x)-\int xf'(x)\,dx+xf(x)-\int f^{-1}(f(x))f'(x)\,dx+xf(x)-G(f(x))</math>
 
 
 
여기서 <math>G(x)= \int f^{-1}(x)\,dx</math>
 
 
 
 
 
 
 
문제  
 
 
 
<math>\int \sqrt{\frac{x}{1-x}}\,dx</math>
 
  
 +
==예==
 +
* 다음 부정적분
 +
:<math>\int \sqrt{\frac{x}{1-x}}\,dx</math>
 +
* <math>G</math>는 다음과 같다
 
<math>G(x)=\int f^{-1}(x)\,dx= \int\frac{x^2}{1+x^2}\,dx=\int(1-\frac{1}{1+x^2})\,dx=x-\arctan x+C</math>
 
<math>G(x)=\int f^{-1}(x)\,dx= \int\frac{x^2}{1+x^2}\,dx=\int(1-\frac{1}{1+x^2})\,dx=x-\arctan x+C</math>
 +
따라서,
 +
:<math>\int \sqrt{\frac{x}{1-x}}\,dx= (x-1)\sqrt{\frac{x}{1-x}}+\arctan{\sqrt{\frac{x}{1-x}}}+C</math>
  
따라서, 
+
 
 
<math>\int \sqrt{\frac{x}{1-x}}\,dx= (x-1)\sqrt{\frac{x}{1-x}}+\arctan{\sqrt{\frac{x}{1-x}}}+C</math>
 
 
 
 
 
 
 
 
 
 
 
==재미있는 사실==
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
*  
 
 
 
 
 
 
 
 
 
 
 
==메모==
 
 
 
 
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
  
 
 
 
 
 
 
==수학용어번역==
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.proofwiki.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
==블로그==
 
[[분류:적분]]
 
 
[[분류:적분]]
 
[[분류:적분]]

2020년 12월 28일 (월) 02:44 기준 최신판

개요

  • 역함수를 이용한 치환적분법

\[\int f(x)\,dx=xf(x)-\int xf'(x)\,dx+xf(x)-\int f^{-1}(f(x))f'(x)\,dx+xf(x)-G(f(x))\] 여기서 \(G(x)= \int f^{-1}(x)\,dx\)


  • 다음 부정적분

\[\int \sqrt{\frac{x}{1-x}}\,dx\]

  • \(G\)는 다음과 같다

\(G(x)=\int f^{-1}(x)\,dx= \int\frac{x^2}{1+x^2}\,dx=\int(1-\frac{1}{1+x^2})\,dx=x-\arctan x+C\) 따라서, \[\int \sqrt{\frac{x}{1-x}}\,dx= (x-1)\sqrt{\frac{x}{1-x}}+\arctan{\sqrt{\frac{x}{1-x}}}+C\]


관련된 항목들