"Quantized universal enveloping algebra"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 2명의 중간 판 24개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* <math>U_{q}(\mathfrak{g})</math> : Kac-Moody 대수의 UEA <math>U(\mathfrak{g})</math> 의 deformation | * <math>U_{q}(\mathfrak{g})</math> : Kac-Moody 대수의 UEA <math>U(\mathfrak{g})</math> 의 deformation | ||
− | * 호프 대수 (Hopf algebra)의 구조를 가짐 | + | * [[호프 대수(Hopf algebra)]]의 구조를 가짐 |
− | * | + | * 양자군 (quantum group)의 예 |
− | |||
− | + | ==Cartan datum== | |
− | |||
− | |||
* Cartan datum <math>(A,P^{\vee},P,\Pi^{\vee},\Pi)</math> | * Cartan datum <math>(A,P^{\vee},P,\Pi^{\vee},\Pi)</math> | ||
− | * <math>A=(a_{ij})_{i,j\in I}</math> symmetrizable GCM | + | * <math>A=(a_{ij})_{i,j\in I}</math> symmetrizable GCM |
** <math>D=\operatorname{diag}(s_i\in\mathbb{Z}_{\geq 0})_{i \in I}</math> diagonal matrix s.t. DA is symmetric | ** <math>D=\operatorname{diag}(s_i\in\mathbb{Z}_{\geq 0})_{i \in I}</math> diagonal matrix s.t. DA is symmetric | ||
* <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : dual weight lattice | * <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : dual weight lattice | ||
26번째 줄: | 15번째 줄: | ||
* <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice | * <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice | ||
* <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots | * <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots | ||
− | * <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j) | + | * <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_ {ji}\}</math> : simple roots |
− | |||
− | |||
− | |||
− | |||
− | |||
* <math>(\cdot|\cdot)</math> symmetric bilinear form on <math>\mathfrak{g}^{*}</math> | * <math>(\cdot|\cdot)</math> symmetric bilinear form on <math>\mathfrak{g}^{*}</math> | ||
* <math>s_{i}=\frac{(\alpha_{i}|\alpha_{i})}{2}\in \mathbb{Z}_{>0}</math> | * <math>s_{i}=\frac{(\alpha_{i}|\alpha_{i})}{2}\in \mathbb{Z}_{>0}</math> | ||
38번째 줄: | 22번째 줄: | ||
* [[q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)]] | * [[q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)]] | ||
− | |||
− | + | ==정수의 q-analogue== | |
− | + | * 정수 n에 대하여 다음과 같이 정의:<math>[n]_{q_i} =\frac{q_ {i}^{n}-q_ {i}^{-n}}{q_i-q_i^{-1}} </math>:<math>[0]_{q_i} =1</math>:<math>[n]_{q_i}!=[n]_ {q_i}[n]_ {q_i}\cdots [n]_{q_i}</math>:<math>{m \choose n}_{q_{i}}=\frac{[m]_{q!}}{[n]_{q_{i}!}[m-n]_{q_i}!}</math> | |
+ | * 극한 <math>q \to 1</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==quantized universal enveloping algebra <math>U_{q}(\mathfrak{g})</math>== | ||
* 생성원 <math>e_i,f_i , (i\in I)</math>, <math>q^{h} (h\in P^{\vee})</math> | * 생성원 <math>e_i,f_i , (i\in I)</math>, <math>q^{h} (h\in P^{\vee})</math> | ||
− | * 관계식 | + | * 관계식 |
** <math>q^0=1</math> | ** <math>q^0=1</math> | ||
** <math>q^{h}q^{h'}=q^{h+h'}</math> | ** <math>q^{h}q^{h'}=q^{h+h'}</math> | ||
− | ** <math> | + | ** <math>e_if _j-f_je _i=\delta_{i,j}\frac{k_i-k_i^{-1}}{q_i-q_i^{-1}}</math> 여기서 <math>k_{i}=q^{h_is _i}</math> |
** <math>q^he_jq^{-h}=q^{\alpha_j(h)}e_j</math> | ** <math>q^he_jq^{-h}=q^{\alpha_j(h)}e_j</math> | ||
** <math>q^hf_jq^{-h}=q^{-\alpha_j(h)}f_j</math> | ** <math>q^hf_jq^{-h}=q^{-\alpha_j(h)}f_j</math> | ||
− | ** <math>\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}_{q_{i}}e_{i}^{1-a_{i,j}-k}e_{j}e_{i}^k=0</math> (<math>i\neq j</math>) | + | ** <math>\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}_{q_{i}}e_ {i}^{1-a_{i,j}-k}e_{j}e_ {i}^k=0</math> (<math>i \neq j</math>) |
− | ** <math>\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}_{q_{i}}f_{i}^{1-a_{i,j}-k}f_{j}f_{i}^k=0</math> (<math>i\neq j</math>) | + | ** <math>\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}_{q_{i}}f_ {i}^{1-a_{i,j}-k}f_{j}f_ {i}^k=0</math> (<math>i \neq j</math>) |
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | * | + | |
+ | ===호프 대수 구조=== | ||
+ | * comultiplication | ||
+ | :<math>\Delta : U_{q}(\mathfrak{g}) \to U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})</math> | ||
+ | :<math>\Delta(q^{h}) =q^{h}\otimes q^{h}</math> | ||
+ | :<math>\Delta(e_i)=e_i\otimes k_i+1\otimes e_i</math> | ||
+ | :<math>\Delta(f_i)=f_i\otimes 1+ k_i^{-1}\otimes f_i</math> | ||
+ | * counit | ||
+ | :<math>\epsilon(q^{h}) =1</math> | ||
+ | :<math>\epsilon(e_i)=\epsilon(f_i)=0</math> | ||
+ | * antipode | ||
+ | :<math>S(q^h) = q^{-h}</math> for <math>x \in \mathfrak{g}</math> | ||
+ | :<math>S(e_i) =-e_ik_i^{-1}, S(f_i)=-k_if_i</math> | ||
− | + | ||
− | + | ==극한 <math>q \to 1</math>== | |
+ | * http://mathoverflow.net/questions/92046/quantum-group-uqsl2 | ||
+ | * <math>[a,b]=\lambda b</math> 이면, <math>q^a b q^{-a}=q^{\lambda} b</math> | ||
+ | * [[베이커-캠벨-하우스도르프 공식]] 참조 | ||
− | |||
− | |||
− | + | ==역사== | |
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
− | + | ||
− | + | ||
− | + | ==메모== | |
* http://mathoverflow.net/questions/5538/why-drinfeld-jimbo-type-quantum-groups | * http://mathoverflow.net/questions/5538/why-drinfeld-jimbo-type-quantum-groups | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ==관련된 항목들== | |
− | + | * [[호프 대수(Hopf algebra)]] | |
− | + | ||
− | |||
− | |||
− | |||
− | * [ | ||
− | |||
− | |||
− | |||
− | |||
− | + | ==사전 형태의 자료== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/Quantum_group | * http://en.wikipedia.org/wiki/Quantum_group | ||
* http://en.wikipedia.org/wiki/Quantum_affine_algebra | * http://en.wikipedia.org/wiki/Quantum_affine_algebra | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | + | ==메타데이터== |
− | + | ===위키데이터=== | |
− | * | + | * ID : [https://www.wikidata.org/wiki/Q2122223 Q2122223] |
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'quantum'}, {'LEMMA': 'group'}] |
2021년 2월 17일 (수) 03:52 기준 최신판
개요
- \(U_{q}(\mathfrak{g})\) : Kac-Moody 대수의 UEA \(U(\mathfrak{g})\) 의 deformation
- 호프 대수(Hopf algebra)의 구조를 가짐
- 양자군 (quantum group)의 예
Cartan datum
- Cartan datum \((A,P^{\vee},P,\Pi^{\vee},\Pi)\)
- \(A=(a_{ij})_{i,j\in I}\) symmetrizable GCM
- \(D=\operatorname{diag}(s_i\in\mathbb{Z}_{\geq 0})_{i \in I}\) diagonal matrix s.t. DA is symmetric
- \(P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})\) : dual weight lattice
- \(\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}\) : Cartan subalgebra
- \(P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}\) : weight lattice
- \(\Pi^{\vee}=\{h_{i}|i\in I\}\) : simple coroots
- \(\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_ {ji}\}\) : simple roots
- \((\cdot|\cdot)\) symmetric bilinear form on \(\mathfrak{g}^{*}\)
- \(s_{i}=\frac{(\alpha_{i}|\alpha_{i})}{2}\in \mathbb{Z}_{>0}\)
- q: indeterminate
- \(q_i=q^{s_{i}}\)
- q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)
정수의 q-analogue
- 정수 n에 대하여 다음과 같이 정의\[[n]_{q_i} =\frac{q_ {i}^{n}-q_ {i}^{-n}}{q_i-q_i^{-1}} \]\[[0]_{q_i} =1\]\[[n]_{q_i}!=[n]_ {q_i}[n]_ {q_i}\cdots [n]_{q_i}\]\[{m \choose n}_{q_{i}}=\frac{[m]_{q!}}{[n]_{q_{i}!}[m-n]_{q_i}!}\]
- 극한 \(q \to 1\)
quantized universal enveloping algebra \(U_{q}(\mathfrak{g})\)
- 생성원 \(e_i,f_i , (i\in I)\), \(q^{h} (h\in P^{\vee})\)
- 관계식
- \(q^0=1\)
- \(q^{h}q^{h'}=q^{h+h'}\)
- \(e_if _j-f_je _i=\delta_{i,j}\frac{k_i-k_i^{-1}}{q_i-q_i^{-1}}\) 여기서 \(k_{i}=q^{h_is _i}\)
- \(q^he_jq^{-h}=q^{\alpha_j(h)}e_j\)
- \(q^hf_jq^{-h}=q^{-\alpha_j(h)}f_j\)
- \(\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}_{q_{i}}e_ {i}^{1-a_{i,j}-k}e_{j}e_ {i}^k=0\) (\(i \neq j\))
- \(\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}_{q_{i}}f_ {i}^{1-a_{i,j}-k}f_{j}f_ {i}^k=0\) (\(i \neq j\))
호프 대수 구조
- comultiplication
\[\Delta : U_{q}(\mathfrak{g}) \to U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})\] \[\Delta(q^{h}) =q^{h}\otimes q^{h}\] \[\Delta(e_i)=e_i\otimes k_i+1\otimes e_i\] \[\Delta(f_i)=f_i\otimes 1+ k_i^{-1}\otimes f_i\]
- counit
\[\epsilon(q^{h}) =1\] \[\epsilon(e_i)=\epsilon(f_i)=0\]
- antipode
\[S(q^h) = q^{-h}\] for \(x \in \mathfrak{g}\) \[S(e_i) =-e_ik_i^{-1}, S(f_i)=-k_if_i\]
극한 \(q \to 1\)
- http://mathoverflow.net/questions/92046/quantum-group-uqsl2
- \([a,b]=\lambda b\) 이면, \(q^a b q^{-a}=q^{\lambda} b\)
- 베이커-캠벨-하우스도르프 공식 참조
역사
메모
- http://mathoverflow.net/questions/5538/why-drinfeld-jimbo-type-quantum-groups
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Quantum_group
- http://en.wikipedia.org/wiki/Quantum_affine_algebra
메타데이터
위키데이터
- ID : Q2122223
Spacy 패턴 목록
- [{'LOWER': 'quantum'}, {'LEMMA': 'group'}]