"콕세터 군 H3"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (새 문서: ==개요== * $$ \begin{array}{c|ccccc} & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{coxeter} \\ \hline H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 \end{array} $$...) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 15개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * | + | * 다음과 같이 정의되는 콕세터 군 <math>H_3</math> |
− | + | :<math> | |
+ | \left\langle r_1,r_2,r_3 \mid r_i^2=(r_3r_1)^2=(r_1r_2)^5=(r_2r_3)^3=1\right\rangle | ||
+ | </math> | ||
+ | * 불변량 | ||
+ | :<math> | ||
\begin{array}{c|ccccc} | \begin{array}{c|ccccc} | ||
− | & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{ | + | & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{Coxeter} \\ |
\hline | \hline | ||
H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 | H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 | ||
\end{array} | \end{array} | ||
− | + | </math> | |
+ | |||
+ | ==푸앵카레 다항식== | ||
+ | * <math>H_3</math>의 푸앵카레 다항식은 다음과 같다 | ||
+ | :<math> | ||
+ | \begin{aligned} | ||
+ | P_{W}(q)&=\sum_{w\in W}q^{\ell(w)} \\ | ||
+ | &=1+3 q+5 q^2+7 q^3+9 q^4+11 q^5+12 q^6+12 q^7+12 q^8+12 q^9+11 q^{10}+9 q^{11}+7 q^{12}+5 q^{13}+3 q^{14}+q^{15} | ||
+ | \end{aligned} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ==콕세터 원소== | ||
+ | * 콕세터 다항식, 즉 콕세터 원소의 특성다항식은 다음과 같다 | ||
+ | :<math> | ||
+ | -(x+1) \left(x^2- \varphi x +1\right) | ||
+ | </math> | ||
+ | 여기서 <math>\varphi=\frac{1+\sqrt{5}}{2}</math> | ||
+ | * 콕세터 다항식의 세 해는 <math>\zeta, \zeta^5,\zeta^9</math>로 주어지며 여기서 <math>\zeta=e^{2\pi i/10}</math> | ||
==루트 시스템== | ==루트 시스템== | ||
* 30개의 원소로 구성 | * 30개의 원소로 구성 | ||
− | * 다음과 같은 세 | + | * 다음과 같은 세 벡터가 simple system을 이룬다 |
− | + | :<math> | |
\begin{align} | \begin{align} | ||
− | r_1= (1+2 \alpha,1 , -2 \alpha) \\ | + | r_1= \beta(1+2 \alpha,1 , -2 \alpha) \\ |
− | r_2= (-1-2 \alpha , 1 , 2 \alpha) \\ | + | r_2= \beta(-1-2 \alpha , 1 , 2 \alpha) \\ |
− | r_3= (2 \alpha , -1-2 \alpha , 1) | + | r_3= \beta(2 \alpha , -1-2 \alpha , 1) |
\end{align} | \end{align} | ||
− | + | </math> | |
− | 여기서 | + | 여기서 <math>\alpha=\cos \pi/5, \beta=\cos 2\pi/5</math> |
+ | [[파일:콕세터 군 H32.png]] | ||
===콕세터 평면으로의 사영=== | ===콕세터 평면으로의 사영=== | ||
27번째 줄: | 50번째 줄: | ||
+ | ==테이블== | ||
+ | * 원소 | ||
+ | :<math> | ||
+ | \begin{array}{ccc} | ||
+ | & w & \ell(w) \\ | ||
+ | \hline | ||
+ | 1 & \{\} & 0 \\ | ||
+ | 2 & \{1\} & 1 \\ | ||
+ | 3 & \{2\} & 1 \\ | ||
+ | 4 & \{3\} & 1 \\ | ||
+ | 5 & \{2,1\} & 2 \\ | ||
+ | 6 & \{3,1\} & 2 \\ | ||
+ | 7 & \{1,2\} & 2 \\ | ||
+ | 8 & \{3,2\} & 2 \\ | ||
+ | 9 & \{2,3\} & 2 \\ | ||
+ | 10 & \{1,2,1\} & 3 \\ | ||
+ | 11 & \{3,2,1\} & 3 \\ | ||
+ | 12 & \{2,3,1\} & 3 \\ | ||
+ | 13 & \{2,1,2\} & 3 \\ | ||
+ | 14 & \{3,1,2\} & 3 \\ | ||
+ | 15 & \{2,3,2\} & 3 \\ | ||
+ | 16 & \{1,2,3\} & 3 \\ | ||
+ | 17 & \{2,1,2,1\} & 4 \\ | ||
+ | 18 & \{3,1,2,1\} & 4 \\ | ||
+ | 19 & \{2,3,2,1\} & 4 \\ | ||
+ | 20 & \{1,2,3,1\} & 4 \\ | ||
+ | 21 & \{1,2,1,2\} & 4 \\ | ||
+ | 22 & \{3,2,1,2\} & 4 \\ | ||
+ | 23 & \{2,3,1,2\} & 4 \\ | ||
+ | 24 & \{1,2,3,2\} & 4 \\ | ||
+ | 25 & \{2,1,2,3\} & 4 \\ | ||
+ | 26 & \{1,2,1,2,1\} & 5 \\ | ||
+ | 27 & \{3,2,1,2,1\} & 5 \\ | ||
+ | 28 & \{2,3,1,2,1\} & 5 \\ | ||
+ | 29 & \{1,2,3,2,1\} & 5 \\ | ||
+ | 30 & \{2,1,2,3,1\} & 5 \\ | ||
+ | 31 & \{3,1,2,1,2\} & 5 \\ | ||
+ | 32 & \{2,3,2,1,2\} & 5 \\ | ||
+ | 33 & \{1,2,3,1,2\} & 5 \\ | ||
+ | 34 & \{2,1,2,3,2\} & 5 \\ | ||
+ | 35 & \{1,2,1,2,3\} & 5 \\ | ||
+ | 36 & \{3,2,1,2,3\} & 5 \\ | ||
+ | 37 & \{3,1,2,1,2,1\} & 6 \\ | ||
+ | 38 & \{2,3,2,1,2,1\} & 6 \\ | ||
+ | 39 & \{1,2,3,1,2,1\} & 6 \\ | ||
+ | 40 & \{2,1,2,3,2,1\} & 6 \\ | ||
+ | 41 & \{1,2,1,2,3,1\} & 6 \\ | ||
+ | 42 & \{3,2,1,2,3,1\} & 6 \\ | ||
+ | 43 & \{2,3,1,2,1,2\} & 6 \\ | ||
+ | 44 & \{1,2,3,2,1,2\} & 6 \\ | ||
+ | 45 & \{2,1,2,3,1,2\} & 6 \\ | ||
+ | 46 & \{1,2,1,2,3,2\} & 6 \\ | ||
+ | 47 & \{3,2,1,2,3,2\} & 6 \\ | ||
+ | 48 & \{3,1,2,1,2,3\} & 6 \\ | ||
+ | 49 & \{2,3,1,2,1,2,1\} & 7 \\ | ||
+ | 50 & \{1,2,3,2,1,2,1\} & 7 \\ | ||
+ | 51 & \{2,1,2,3,1,2,1\} & 7 \\ | ||
+ | 52 & \{1,2,1,2,3,2,1\} & 7 \\ | ||
+ | 53 & \{3,2,1,2,3,2,1\} & 7 \\ | ||
+ | 54 & \{3,1,2,1,2,3,1\} & 7 \\ | ||
+ | 55 & \{1,2,3,1,2,1,2\} & 7 \\ | ||
+ | 56 & \{2,1,2,3,2,1,2\} & 7 \\ | ||
+ | 57 & \{1,2,1,2,3,1,2\} & 7 \\ | ||
+ | 58 & \{3,2,1,2,3,1,2\} & 7 \\ | ||
+ | 59 & \{3,1,2,1,2,3,2\} & 7 \\ | ||
+ | 60 & \{2,3,1,2,1,2,3\} & 7 \\ | ||
+ | 61 & \{1,2,3,1,2,1,2,1\} & 8 \\ | ||
+ | 62 & \{2,1,2,3,2,1,2,1\} & 8 \\ | ||
+ | 63 & \{1,2,1,2,3,1,2,1\} & 8 \\ | ||
+ | 64 & \{3,2,1,2,3,1,2,1\} & 8 \\ | ||
+ | 65 & \{3,1,2,1,2,3,2,1\} & 8 \\ | ||
+ | 66 & \{2,3,1,2,1,2,3,1\} & 8 \\ | ||
+ | 67 & \{2,1,2,3,1,2,1,2\} & 8 \\ | ||
+ | 68 & \{1,2,1,2,3,2,1,2\} & 8 \\ | ||
+ | 69 & \{3,2,1,2,3,2,1,2\} & 8 \\ | ||
+ | 70 & \{3,1,2,1,2,3,1,2\} & 8 \\ | ||
+ | 71 & \{2,3,1,2,1,2,3,2\} & 8 \\ | ||
+ | 72 & \{1,2,3,1,2,1,2,3\} & 8 \\ | ||
+ | 73 & \{2,1,2,3,1,2,1,2,1\} & 9 \\ | ||
+ | 74 & \{1,2,1,2,3,2,1,2,1\} & 9 \\ | ||
+ | 75 & \{3,2,1,2,3,2,1,2,1\} & 9 \\ | ||
+ | 76 & \{3,1,2,1,2,3,1,2,1\} & 9 \\ | ||
+ | 77 & \{2,3,1,2,1,2,3,2,1\} & 9 \\ | ||
+ | 78 & \{1,2,3,1,2,1,2,3,1\} & 9 \\ | ||
+ | 79 & \{1,2,1,2,3,1,2,1,2\} & 9 \\ | ||
+ | 80 & \{3,2,1,2,3,1,2,1,2\} & 9 \\ | ||
+ | 81 & \{3,1,2,1,2,3,2,1,2\} & 9 \\ | ||
+ | 82 & \{2,3,1,2,1,2,3,1,2\} & 9 \\ | ||
+ | 83 & \{1,2,3,1,2,1,2,3,2\} & 9 \\ | ||
+ | 84 & \{2,1,2,3,1,2,1,2,3\} & 9 \\ | ||
+ | 85 & \{1,2,1,2,3,1,2,1,2,1\} & 10 \\ | ||
+ | 86 & \{3,2,1,2,3,1,2,1,2,1\} & 10 \\ | ||
+ | 87 & \{3,1,2,1,2,3,2,1,2,1\} & 10 \\ | ||
+ | 88 & \{2,3,1,2,1,2,3,1,2,1\} & 10 \\ | ||
+ | 89 & \{1,2,3,1,2,1,2,3,2,1\} & 10 \\ | ||
+ | 90 & \{2,1,2,3,1,2,1,2,3,1\} & 10 \\ | ||
+ | 91 & \{3,1,2,1,2,3,1,2,1,2\} & 10 \\ | ||
+ | 92 & \{2,3,1,2,1,2,3,2,1,2\} & 10 \\ | ||
+ | 93 & \{1,2,3,1,2,1,2,3,1,2\} & 10 \\ | ||
+ | 94 & \{2,1,2,3,1,2,1,2,3,2\} & 10 \\ | ||
+ | 95 & \{3,2,1,2,3,1,2,1,2,3\} & 10 \\ | ||
+ | 96 & \{3,1,2,1,2,3,1,2,1,2,1\} & 11 \\ | ||
+ | 97 & \{2,3,1,2,1,2,3,2,1,2,1\} & 11 \\ | ||
+ | 98 & \{1,2,3,1,2,1,2,3,1,2,1\} & 11 \\ | ||
+ | 99 & \{2,1,2,3,1,2,1,2,3,2,1\} & 11 \\ | ||
+ | 100 & \{3,2,1,2,3,1,2,1,2,3,1\} & 11 \\ | ||
+ | 101 & \{2,3,1,2,1,2,3,1,2,1,2\} & 11 \\ | ||
+ | 102 & \{1,2,3,1,2,1,2,3,2,1,2\} & 11 \\ | ||
+ | 103 & \{2,1,2,3,1,2,1,2,3,1,2\} & 11 \\ | ||
+ | 104 & \{3,2,1,2,3,1,2,1,2,3,2\} & 11 \\ | ||
+ | 105 & \{2,3,1,2,1,2,3,1,2,1,2,1\} & 12 \\ | ||
+ | 106 & \{1,2,3,1,2,1,2,3,2,1,2,1\} & 12 \\ | ||
+ | 107 & \{2,1,2,3,1,2,1,2,3,1,2,1\} & 12 \\ | ||
+ | 108 & \{3,2,1,2,3,1,2,1,2,3,2,1\} & 12 \\ | ||
+ | 109 & \{1,2,3,1,2,1,2,3,1,2,1,2\} & 12 \\ | ||
+ | 110 & \{2,1,2,3,1,2,1,2,3,2,1,2\} & 12 \\ | ||
+ | 111 & \{3,2,1,2,3,1,2,1,2,3,1,2\} & 12 \\ | ||
+ | 112 & \{1,2,3,1,2,1,2,3,1,2,1,2,1\} & 13 \\ | ||
+ | 113 & \{2,1,2,3,1,2,1,2,3,2,1,2,1\} & 13 \\ | ||
+ | 114 & \{3,2,1,2,3,1,2,1,2,3,1,2,1\} & 13 \\ | ||
+ | 115 & \{2,1,2,3,1,2,1,2,3,1,2,1,2\} & 13 \\ | ||
+ | 116 & \{3,2,1,2,3,1,2,1,2,3,2,1,2\} & 13 \\ | ||
+ | 117 & \{2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 14 \\ | ||
+ | 118 & \{3,2,1,2,3,1,2,1,2,3,2,1,2,1\} & 14 \\ | ||
+ | 119 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2\} & 14 \\ | ||
+ | 120 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 15 | ||
+ | \end{array} | ||
+ | </math> | ||
+ | |||
+ | ==재미있는 사실== | ||
+ | * 2011년 9월 미국수학회보(Notices of the American Mathematical Society)의 표지에 콕세터 평면으로의 사영이 등장, [http://www.ams.org/notices/201108/rnoti-sep-2011-cover1.pdf 링크] | ||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | * [[교대군 A5]] | ||
+ | * [[정이십면체 뫼비우스 변환군]] | ||
+ | * [[콕세터 군 H4]] | ||
+ | |||
+ | |||
+ | ==매스매티카 파일 및 계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxQURSVzA3QXYzQTA/edit?usp=drivesdk | ||
+ | |||
+ | |||
+ | ==사전 형태의 자료== | ||
+ | * http://en.wikipedia.org/wiki/Binary_icosahedral_group | ||
[[분류:리군과 리대수]] | [[분류:리군과 리대수]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q4913898 Q4913898] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'binary'}, {'LOWER': 'icosahedral'}, {'LEMMA': 'group'}] |
2021년 2월 17일 (수) 02:22 기준 최신판
개요
- 다음과 같이 정의되는 콕세터 군 \(H_3\)
\[ \left\langle r_1,r_2,r_3 \mid r_i^2=(r_3r_1)^2=(r_1r_2)^5=(r_2r_3)^3=1\right\rangle \]
- 불변량
\[ \begin{array}{c|ccccc} & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{Coxeter} \\ \hline H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 \end{array} \]
푸앵카레 다항식
- \(H_3\)의 푸앵카레 다항식은 다음과 같다
\[ \begin{aligned} P_{W}(q)&=\sum_{w\in W}q^{\ell(w)} \\ &=1+3 q+5 q^2+7 q^3+9 q^4+11 q^5+12 q^6+12 q^7+12 q^8+12 q^9+11 q^{10}+9 q^{11}+7 q^{12}+5 q^{13}+3 q^{14}+q^{15} \end{aligned} \]
콕세터 원소
- 콕세터 다항식, 즉 콕세터 원소의 특성다항식은 다음과 같다
\[ -(x+1) \left(x^2- \varphi x +1\right) \] 여기서 \(\varphi=\frac{1+\sqrt{5}}{2}\)
- 콕세터 다항식의 세 해는 \(\zeta, \zeta^5,\zeta^9\)로 주어지며 여기서 \(\zeta=e^{2\pi i/10}\)
루트 시스템
- 30개의 원소로 구성
- 다음과 같은 세 벡터가 simple system을 이룬다
\[ \begin{align} r_1= \beta(1+2 \alpha,1 , -2 \alpha) \\ r_2= \beta(-1-2 \alpha , 1 , 2 \alpha) \\ r_3= \beta(2 \alpha , -1-2 \alpha , 1) \end{align} \] 여기서 \(\alpha=\cos \pi/5, \beta=\cos 2\pi/5\)
콕세터 평면으로의 사영
테이블
- 원소
\[ \begin{array}{ccc} & w & \ell(w) \\ \hline 1 & \{\} & 0 \\ 2 & \{1\} & 1 \\ 3 & \{2\} & 1 \\ 4 & \{3\} & 1 \\ 5 & \{2,1\} & 2 \\ 6 & \{3,1\} & 2 \\ 7 & \{1,2\} & 2 \\ 8 & \{3,2\} & 2 \\ 9 & \{2,3\} & 2 \\ 10 & \{1,2,1\} & 3 \\ 11 & \{3,2,1\} & 3 \\ 12 & \{2,3,1\} & 3 \\ 13 & \{2,1,2\} & 3 \\ 14 & \{3,1,2\} & 3 \\ 15 & \{2,3,2\} & 3 \\ 16 & \{1,2,3\} & 3 \\ 17 & \{2,1,2,1\} & 4 \\ 18 & \{3,1,2,1\} & 4 \\ 19 & \{2,3,2,1\} & 4 \\ 20 & \{1,2,3,1\} & 4 \\ 21 & \{1,2,1,2\} & 4 \\ 22 & \{3,2,1,2\} & 4 \\ 23 & \{2,3,1,2\} & 4 \\ 24 & \{1,2,3,2\} & 4 \\ 25 & \{2,1,2,3\} & 4 \\ 26 & \{1,2,1,2,1\} & 5 \\ 27 & \{3,2,1,2,1\} & 5 \\ 28 & \{2,3,1,2,1\} & 5 \\ 29 & \{1,2,3,2,1\} & 5 \\ 30 & \{2,1,2,3,1\} & 5 \\ 31 & \{3,1,2,1,2\} & 5 \\ 32 & \{2,3,2,1,2\} & 5 \\ 33 & \{1,2,3,1,2\} & 5 \\ 34 & \{2,1,2,3,2\} & 5 \\ 35 & \{1,2,1,2,3\} & 5 \\ 36 & \{3,2,1,2,3\} & 5 \\ 37 & \{3,1,2,1,2,1\} & 6 \\ 38 & \{2,3,2,1,2,1\} & 6 \\ 39 & \{1,2,3,1,2,1\} & 6 \\ 40 & \{2,1,2,3,2,1\} & 6 \\ 41 & \{1,2,1,2,3,1\} & 6 \\ 42 & \{3,2,1,2,3,1\} & 6 \\ 43 & \{2,3,1,2,1,2\} & 6 \\ 44 & \{1,2,3,2,1,2\} & 6 \\ 45 & \{2,1,2,3,1,2\} & 6 \\ 46 & \{1,2,1,2,3,2\} & 6 \\ 47 & \{3,2,1,2,3,2\} & 6 \\ 48 & \{3,1,2,1,2,3\} & 6 \\ 49 & \{2,3,1,2,1,2,1\} & 7 \\ 50 & \{1,2,3,2,1,2,1\} & 7 \\ 51 & \{2,1,2,3,1,2,1\} & 7 \\ 52 & \{1,2,1,2,3,2,1\} & 7 \\ 53 & \{3,2,1,2,3,2,1\} & 7 \\ 54 & \{3,1,2,1,2,3,1\} & 7 \\ 55 & \{1,2,3,1,2,1,2\} & 7 \\ 56 & \{2,1,2,3,2,1,2\} & 7 \\ 57 & \{1,2,1,2,3,1,2\} & 7 \\ 58 & \{3,2,1,2,3,1,2\} & 7 \\ 59 & \{3,1,2,1,2,3,2\} & 7 \\ 60 & \{2,3,1,2,1,2,3\} & 7 \\ 61 & \{1,2,3,1,2,1,2,1\} & 8 \\ 62 & \{2,1,2,3,2,1,2,1\} & 8 \\ 63 & \{1,2,1,2,3,1,2,1\} & 8 \\ 64 & \{3,2,1,2,3,1,2,1\} & 8 \\ 65 & \{3,1,2,1,2,3,2,1\} & 8 \\ 66 & \{2,3,1,2,1,2,3,1\} & 8 \\ 67 & \{2,1,2,3,1,2,1,2\} & 8 \\ 68 & \{1,2,1,2,3,2,1,2\} & 8 \\ 69 & \{3,2,1,2,3,2,1,2\} & 8 \\ 70 & \{3,1,2,1,2,3,1,2\} & 8 \\ 71 & \{2,3,1,2,1,2,3,2\} & 8 \\ 72 & \{1,2,3,1,2,1,2,3\} & 8 \\ 73 & \{2,1,2,3,1,2,1,2,1\} & 9 \\ 74 & \{1,2,1,2,3,2,1,2,1\} & 9 \\ 75 & \{3,2,1,2,3,2,1,2,1\} & 9 \\ 76 & \{3,1,2,1,2,3,1,2,1\} & 9 \\ 77 & \{2,3,1,2,1,2,3,2,1\} & 9 \\ 78 & \{1,2,3,1,2,1,2,3,1\} & 9 \\ 79 & \{1,2,1,2,3,1,2,1,2\} & 9 \\ 80 & \{3,2,1,2,3,1,2,1,2\} & 9 \\ 81 & \{3,1,2,1,2,3,2,1,2\} & 9 \\ 82 & \{2,3,1,2,1,2,3,1,2\} & 9 \\ 83 & \{1,2,3,1,2,1,2,3,2\} & 9 \\ 84 & \{2,1,2,3,1,2,1,2,3\} & 9 \\ 85 & \{1,2,1,2,3,1,2,1,2,1\} & 10 \\ 86 & \{3,2,1,2,3,1,2,1,2,1\} & 10 \\ 87 & \{3,1,2,1,2,3,2,1,2,1\} & 10 \\ 88 & \{2,3,1,2,1,2,3,1,2,1\} & 10 \\ 89 & \{1,2,3,1,2,1,2,3,2,1\} & 10 \\ 90 & \{2,1,2,3,1,2,1,2,3,1\} & 10 \\ 91 & \{3,1,2,1,2,3,1,2,1,2\} & 10 \\ 92 & \{2,3,1,2,1,2,3,2,1,2\} & 10 \\ 93 & \{1,2,3,1,2,1,2,3,1,2\} & 10 \\ 94 & \{2,1,2,3,1,2,1,2,3,2\} & 10 \\ 95 & \{3,2,1,2,3,1,2,1,2,3\} & 10 \\ 96 & \{3,1,2,1,2,3,1,2,1,2,1\} & 11 \\ 97 & \{2,3,1,2,1,2,3,2,1,2,1\} & 11 \\ 98 & \{1,2,3,1,2,1,2,3,1,2,1\} & 11 \\ 99 & \{2,1,2,3,1,2,1,2,3,2,1\} & 11 \\ 100 & \{3,2,1,2,3,1,2,1,2,3,1\} & 11 \\ 101 & \{2,3,1,2,1,2,3,1,2,1,2\} & 11 \\ 102 & \{1,2,3,1,2,1,2,3,2,1,2\} & 11 \\ 103 & \{2,1,2,3,1,2,1,2,3,1,2\} & 11 \\ 104 & \{3,2,1,2,3,1,2,1,2,3,2\} & 11 \\ 105 & \{2,3,1,2,1,2,3,1,2,1,2,1\} & 12 \\ 106 & \{1,2,3,1,2,1,2,3,2,1,2,1\} & 12 \\ 107 & \{2,1,2,3,1,2,1,2,3,1,2,1\} & 12 \\ 108 & \{3,2,1,2,3,1,2,1,2,3,2,1\} & 12 \\ 109 & \{1,2,3,1,2,1,2,3,1,2,1,2\} & 12 \\ 110 & \{2,1,2,3,1,2,1,2,3,2,1,2\} & 12 \\ 111 & \{3,2,1,2,3,1,2,1,2,3,1,2\} & 12 \\ 112 & \{1,2,3,1,2,1,2,3,1,2,1,2,1\} & 13 \\ 113 & \{2,1,2,3,1,2,1,2,3,2,1,2,1\} & 13 \\ 114 & \{3,2,1,2,3,1,2,1,2,3,1,2,1\} & 13 \\ 115 & \{2,1,2,3,1,2,1,2,3,1,2,1,2\} & 13 \\ 116 & \{3,2,1,2,3,1,2,1,2,3,2,1,2\} & 13 \\ 117 & \{2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 14 \\ 118 & \{3,2,1,2,3,1,2,1,2,3,2,1,2,1\} & 14 \\ 119 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2\} & 14 \\ 120 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 15 \end{array} \]
재미있는 사실
- 2011년 9월 미국수학회보(Notices of the American Mathematical Society)의 표지에 콕세터 평면으로의 사영이 등장, 링크
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
메타데이터
위키데이터
- ID : Q4913898
Spacy 패턴 목록
- [{'LOWER': 'binary'}, {'LOWER': 'icosahedral'}, {'LEMMA': 'group'}]