"Gauge theory"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)   | 
				|||
| (사용자 3명의 중간 판 41개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==introduction==  | |
| + | * {{수학노트|url=게이지_이론}}  | ||
| − | |||
| − | |||
| − | + | ==meaning of the gague invariance==  | |
| − | + | * gauge = measure  | |
| + | * gauge invariance = measurement에 있어서의 invariance를 말함  | ||
| + | * Lagrangian should be gauge invariant.  | ||
| − | + | ||
| − | + | ===gauge symmetry and measurement===  | |
| − | + | *  symmetry implies the existence of something unmeasurable.  | |
| + | *  phase is one example  | ||
| − | + | ||
| − | + | ==gauge field==  | |
| − | + | *  a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one  | |
| − | *    | + | *  one example is the electromagnetic field  | 
| − | |||
| − | |||
| − | |||
| − | + | ||
| − | + | ==gauge field tensor==  | |
| − | <  | + | *  electromagnetic field tensor  <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math>  | 
| + | *  general gauge fields tensor  <math>G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}</math>  | ||
| − | + | ||
| − | |||
| − | |||
| − | + | ||
| − | + | ==examples of renormalizable gauge theory==  | |
| − | + | * [[QED]]  | |
| + | *  QCD  | ||
| + | * [[renormalization]]  | ||
| − | + | ||
| − | + | ||
| − | + | ==Abelian gauge theory==  | |
| − | + | * abelian gauge theory has a duality  | |
| − | + | ||
| − | |||
| − | + | ||
| − | + | ==Non-Abelian gauge theory==  | |
| − | + | * [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]]  | |
| − | + | ||
| − | + | ||
| − | + | ==differential geometry formulation==  | |
| − | + | *  manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection  | |
| + | *  connection <math>A</math> = special kind of 1-form   | ||
| + | * <math>dA</math> = 2-form which measures the electromagnetic charge  | ||
| + | *  Then the Chern class measures the magnetic charge.  | ||
| − | + | ||
| − | + | ||
| − | + | ==Principal G-bundle==  | |
| − | |||
| − | + | * [[principal bundles]]  | |
| + | * [[topology and vector bundles]]  | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ==3d Chern-Simons theory==  | |
| − | + | *  3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.  | |
| + | *  analogy with class field theory  | ||
| + | *  replace <math>\Sigma</math> by <math>spec O_K</math>  | ||
| + | *  then flat connection on <math>spec O_K</math> is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)  | ||
| + | *  Now from An's article,   | ||
| − | + | ||
| − | + | ||
| − | + | ==메모==  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]  | |
| + | *     | ||
| − | + | ||
| − | + | ||
| − | + | ==related items==  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | * [[differential geometry and topology|differential geometry]]  | |
| − | + | ||
| − | + | ||
| − | + | ==encyclopedia==  | |
| − | + | * http://en.wikipedia.org/wiki/principal_bundle  | |
| + | * [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)]  | ||
| − | + | ||
| − | + | ||
| − | + | ==books==  | |
| − | + | * The Geometry of Physics: An Introduction  | |
| − | + | * An elementary primer for gauge theory  | |
| − | + | * [[2009년 books and articles|찾아볼 수학책]]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | *   | ||
| − | *   | ||
| − | *   | ||
| − | |||
| − | + | ||
| − | + | ||
| − | *   | + | ==expositions==  | 
| − | *   | + | * Wilczek, Frank. “Unification of Force and Substance.” arXiv:1512.02094 [hep-Ph, Physics:hep-Th, Physics:physics], December 7, 2015. http://arxiv.org/abs/1512.02094.  | 
| + | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003  | ||
| − | + | * [http://www.thetangentbundle.net/papers/gauge.pdf Connections, Gauges and Field Theories]  | |
| − | + | * [http://www.math.cornell.edu/%7Egoldberg/Notes/AboutConnections.pdf WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR?] TIMOTHY E. GOLDBERG  | |
| − | + | ==articles==  | |
| + | * Slavnov, A. A. “60 Years of Gauge Fields.” arXiv:1511.05713 [hep-Th], November 18, 2015. http://arxiv.org/abs/1511.05713.  | ||
| + | * Weatherall, James Owen. ‘Fiber Bundles, Yang-Mills Theory, and General Relativity’. arXiv:1411.3281 [gr-Qc, Physics:hep-Th, Physics:math-Ph, Physics:physics], 12 November 2014. http://arxiv.org/abs/1411.3281.  | ||
| + | * [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ]  | ||
| + | [[분류:math and physics]]  | ||
| + | [[분류:gauge theory]]  | ||
| + | [[분류:migrate]]  | ||
| − | + | ==메타데이터==  | |
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q214850 Q214850]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}]  | ||
| + | * [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}]  | ||
2021년 2월 17일 (수) 01:24 기준 최신판
introduction
meaning of the gague invariance
- gauge = measure
 - gauge invariance = measurement에 있어서의 invariance를 말함
 - Lagrangian should be gauge invariant.
 
 
gauge symmetry and measurement
- symmetry implies the existence of something unmeasurable.
 - phase is one example
 
 
gauge field
- a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
 
- one example is the electromagnetic field
 
 
gauge field tensor
- electromagnetic field tensor \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
 - general gauge fields tensor \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)
 
 
 
examples of renormalizable gauge theory
- QED
 - QCD
 - renormalization
 
 
 
Abelian gauge theory
- abelian gauge theory has a duality
 
 
 
Non-Abelian gauge theory
 
 
differential geometry formulation
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
 - connection \(A\) = special kind of 1-form
 - \(dA\) = 2-form which measures the electromagnetic charge
 - Then the Chern class measures the magnetic charge.
 
 
 
Principal G-bundle
 
 
 
3d Chern-Simons theory
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
 - analogy with class field theory
 - replace \(\Sigma\) by \(spec O_K\)
 - then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
 - Now from An's article,
 
 
 
메모
 
 
 
 
encyclopedia
- http://en.wikipedia.org/wiki/principal_bundle
 - http://en.wikipedia.org/wiki/Connection_(vector_bundle)
 
 
 
books
- The Geometry of Physics: An Introduction
 - An elementary primer for gauge theory
 - 찾아볼 수학책
 
 
 
expositions
- Wilczek, Frank. “Unification of Force and Substance.” arXiv:1512.02094 [hep-Ph, Physics:hep-Th, Physics:physics], December 7, 2015. http://arxiv.org/abs/1512.02094.
 - On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
 
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
 
articles
- Slavnov, A. A. “60 Years of Gauge Fields.” arXiv:1511.05713 [hep-Th], November 18, 2015. http://arxiv.org/abs/1511.05713.
 - Weatherall, James Owen. ‘Fiber Bundles, Yang-Mills Theory, and General Relativity’. arXiv:1411.3281 [gr-Qc, Physics:hep-Th, Physics:math-Ph, Physics:physics], 12 November 2014. http://arxiv.org/abs/1411.3281.
 - Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]
 
메타데이터
위키데이터
- ID : Q214850
 
Spacy 패턴 목록
- [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}]
 - [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}]