"Gauge theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 18개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>meaning of the gague invariance</h5>
+
==introduction==
 +
* {{수학노트|url=게이지_이론}}
 +
 
 +
 
 +
==meaning of the gague invariance==
  
 
* gauge = measure
 
* gauge = measure
5번째 줄: 9번째 줄:
 
* Lagrangian should be gauge invariant.
 
* Lagrangian should be gauge invariant.
  
 
+
  
 
+
===gauge symmetry and measurement===
  
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">gauge field</h5>
+
*  symmetry implies the existence of something unmeasurable.
 +
*  phase is one example
  
* a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one<br>
+
   
  
*  one example is the electromagnetic field<br>
+
==gauge field==
  
 
+
*  a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
  
 
+
*  one example is the electromagnetic field
  
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Gauge invariance of the QED Lagrangian</h5>
+
  
<math>\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu</math>
+
==gauge field tensor==
  
Now we have a Lagrangian with interaction terms.
+
*  electromagnetic field tensor  <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math>
 +
*  general gauge fields tensor  <math>G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}</math>
  
* local phase transformation of fields<br><math>\psi(x) \to  e^{i\alpha(x)}\psi(x)</math><br>
+
   
*  gauge transformation of electromagnetic field<br><math>A_{\mu}(x) \to A_{\mu}(x)+\frac{1}{e}\partial_{\mu}\alpha(x)}</math><br>
 
*  Look at the [[QED]] page<br>
 
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">gauge field tensor</h5>
+
==examples of renormalizable gauge theory==
  
*  electromagnetic field tensor  <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math><br>
+
* [[QED]]
*  general gauge fields tensor  <math>G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}</math><br>
+
*  QCD
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">examples of renormalizable gauge theory</h5>
 
 
 
* [[QED]]<br>
 
*  QCD<br>
 
 
* [[renormalization]]
 
* [[renormalization]]
  
 
+
  
 
+
  
<h5>Abelian gauge theory</h5>
+
==Abelian gauge theory==
  
 
* abelian gauge theory has a duality
 
* abelian gauge theory has a duality
  
 
+
  
 
+
  
<h5>Non-Abelian gauge theory</h5>
+
==Non-Abelian gauge theory==
  
 
* [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]]
 
* [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]]
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">differential geometry formulation</h5>
+
==differential geometry formulation==
  
manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection<br>
+
manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection
*  connection <math>A</math> = special kind of 1-form <br>
+
*  connection <math>A</math> = special kind of 1-form
* <math>dA</math> = 2-form which measures the electromagnetic charge<br>
+
* <math>dA</math> = 2-form which measures the electromagnetic charge
*  Then the Chern class measures the magnetic charge.<br>
+
*  Then the Chern class measures the magnetic charge.
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">Principal G-bundle</h5>
+
==Principal G-bundle==
  
* [[principal bundles]]<br>
+
* [[principal bundles]]
* [[topology and vector bundles]]<br>
+
* [[topology and vector bundles]]
  
 
+
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">3d Chern-Simons theory</h5>
+
==3d Chern-Simons theory==
  
*  3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br>
+
*  3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.
*  analogy with class field theory<br>
+
*  analogy with class field theory
replace <math>\Sigma</math> by <math>spec O_K</math><br>
+
replace <math>\Sigma</math> by <math>spec O_K</math>
*  then flat connection on <math>spec O_K</math> is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)<br>
+
*  then flat connection on <math>spec O_K</math> is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
*  Now from An's article, <br>
+
*  Now from An's article,  
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">메모</h5>
+
==메모==
  
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>
+
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]
*  <br>
+
*  
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
+
==related items==
  
* [[differential geometry and topology|differential geometry]]<br>
+
* [[differential geometry and topology|differential geometry]]
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">encyclopedia</h5>
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/principal_bundle
 
* http://en.wikipedia.org/wiki/principal_bundle
 
* [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)]
 
* [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)]
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
+
==books==
  
 
* The Geometry of Physics: An Introduction
 
* The Geometry of Physics: An Introduction
* An elementary primer for gauge theory
+
* An elementary primer for gauge theory
 
* [[2009년 books and articles|찾아볼 수학책]]
 
* [[2009년 books and articles|찾아볼 수학책]]
  
 
+
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">expositions</h5>
 
 
 
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003<br>
 
  
* [http://www.thetangentbundle.net/papers/gauge.pdf Connections, Gauges and Field Theories]<br>
+
  
* [http://www.math.cornell.edu/%7Egoldberg/Notes/AboutConnections.pdf WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR?] TIMOTHY E. GOLDBERG<br>
+
==expositions==
 +
* Wilczek, Frank. “Unification of Force and Substance.” arXiv:1512.02094 [hep-Ph, Physics:hep-Th, Physics:physics], December 7, 2015. http://arxiv.org/abs/1512.02094.
 +
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003
  
 
+
* [http://www.thetangentbundle.net/papers/gauge.pdf Connections, Gauges and Field Theories]
  
 
+
* [http://www.math.cornell.edu/%7Egoldberg/Notes/AboutConnections.pdf WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR?] TIMOTHY E. GOLDBERG
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
==articles==
 +
* Slavnov, A. A. “60 Years of Gauge Fields.” arXiv:1511.05713 [hep-Th], November 18, 2015. http://arxiv.org/abs/1511.05713.
 +
* Weatherall, James Owen. ‘Fiber Bundles, Yang-Mills Theory, and General Relativity’. arXiv:1411.3281 [gr-Qc, Physics:hep-Th, Physics:math-Ph, Physics:physics], 12 November 2014. http://arxiv.org/abs/1411.3281.
 +
* [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ]
 +
[[분류:math and physics]]
 +
[[분류:gauge theory]]
 +
[[분류:migrate]]
  
* [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ]
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q214850 Q214850]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}]
 +
* [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}]

2021년 2월 17일 (수) 02:24 기준 최신판

introduction


meaning of the gague invariance

  • gauge = measure
  • gauge invariance = measurement에 있어서의 invariance를 말함
  • Lagrangian should be gauge invariant.


gauge symmetry and measurement

  • symmetry implies the existence of something unmeasurable.
  • phase is one example


gauge field

  • a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
  • one example is the electromagnetic field


gauge field tensor

  • electromagnetic field tensor \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
  • general gauge fields tensor \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)



examples of renormalizable gauge theory



Abelian gauge theory

  • abelian gauge theory has a duality



Non-Abelian gauge theory



differential geometry formulation

  • manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
  • connection \(A\) = special kind of 1-form
  • \(dA\) = 2-form which measures the electromagnetic charge
  • Then the Chern class measures the magnetic charge.



Principal G-bundle




3d Chern-Simons theory

  • 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
  • analogy with class field theory
  • replace \(\Sigma\) by \(spec O_K\)
  • then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
  • Now from An's article,



메모



related items



encyclopedia



books

  • The Geometry of Physics: An Introduction
  • An elementary primer for gauge theory
  • 찾아볼 수학책



expositions

articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gauge'}, {'LEMMA': 'theory'}]
  • [{'LOWER': 'gauge'}, {'LEMMA': 'symmetry'}]