"Classical field theory and classical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 29개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* can be formulated using classical fields and Lagrangian density
 
* can be formulated using classical fields and Lagrangian density
5번째 줄: 5번째 줄:
 
* require the invariance of action integral over arbitrary region
 
* require the invariance of action integral over arbitrary region
 
* this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
 
* this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
* three important conserved quantity<br>
+
* three important conserved quantity
 
** energy
 
** energy
 
** momentum
 
** momentum
 
** angular momentum
 
** angular momentum
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">notation</h5>
+
==notation==
  
* <math>T</math> kinetic energy<br>
+
* dynamical variables <math>q_{k}, \dot{q}_k</math> for <math>k=1,\cdots, N</math>
* <math>V</math> potential energy<br>
+
* <math>T</math> kinetic energy
* We have Lagrangian <math>L=T-V</math><br>
+
* <math>V</math> potential energy
* Define the Hamiltonian<br>
+
* We have Lagrangian <math>L=T-V</math>
* <math>H =p\dot q-L</math><br>
+
* Define the Hamiltonian
* <math>p\dot q</math> is twice of kinetic energy<br>
+
* <math>H =\sum_{k=1}^{N} p_{k}\dot{q}_{k}-L</math>
* Thus the Hamiltonian represents <math>H=T+V</math> the total energy of the system<br>
+
* <math>p\dot q</math> is twice of kinetic energy
 +
* Thus the Hamiltonian represents <math>H=T+V</math> the total energy of the system
  
 
+
  
 
+
  
<h5>Lagrangian formalism</h5>
+
==Lagrangian formalism==
  
 
* [[Lagrangian formalism]]
 
* [[Lagrangian formalism]]
  
 
+
  
 
+
  
 
+
==canonically conjugate momentum==
  
<h5 style="margin: 0px; line-height: 2em;">Hamiltonian mechanics</h5>
+
* canonically conjugate momenta<math>p_{k}=\frac{\partial L}{\partial \dot{q}_k}</math>
 +
* instead of <math>q_{k}, \dot{q}_k</math>, one can use <math>q_{k}, p_{k}</math> as dynamical variables
  
* conjugate variables are on the equal footing<br>
+
 +
 
 +
 +
 
 +
 +
 
 +
==Hamiltonian mechanics==
 +
 
 +
* conjugate variables are on the equal footing
 
* [http://statphys.springnote.com/pages/5695329 고전역학에서의 가적분성] 항목 참조
 
* [http://statphys.springnote.com/pages/5695329 고전역학에서의 가적분성] 항목 참조
  
 
+
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">Poisson bracket</h5>
+
==Poisson bracket==
  
For <math>f(p_i,q_i,t), g(p_i,q_i,t)</math> , we define the Poisson bracket
+
For <math>f(p_i,q_i,t), g(p_i,q_i,t)</math> , we define the Poisson bracket
  
 
<math>\{f,g\} = \sum_{i=1}^{N} \left[  \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]</math>
 
<math>\{f,g\} = \sum_{i=1}^{N} \left[  \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]</math>
59번째 줄: 69번째 줄:
 
<math>\{f,g\} = \frac{1}{i}[u,v]</math>
 
<math>\{f,g\} = \frac{1}{i}[u,v]</math>
  
 
+
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">phase space</h5>
 
  
 
+
  
 
+
==phase space==
  
<h5 style="margin: 0px; line-height: 2em;">canonically conjugate momentum</h5>
+
  
<math>{\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0</math>
+
  
 
+
==links and webpages==
  
 
+
* http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf
 
+
* [http://www.math.ucr.edu/home/baez/classical/ Classical Mechanics]
==== 하위페이지 ====
 
 
 
* [[classical field theory  and classical mechanics|classical field theory and classical mechanics]]<br>
 
** [[Lagrangian formalism]]<br>
 
** [[Legendre transformation]]<br>
 
** [[Nonlinear Sigma model]]<br>
 
** [[symmetry and conserved quantitiy : Noether's theorem]]<br>
 
** [[symplectic geometry]]<br>
 
*** [[action-angle variables]]<br>
 
*** [[canonical transformation]]<br>
 
*** [[Hamiltonian flows]]<br>
 
*** [[moment map]]<br>
 
*** [[quantization of Poisson algebras]]<br>
 
*** [[symplectic leaves]]<br>
 
*** [[two-body problem]]<br>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>links and webpages</h5>
 
 
 
* [http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf ][http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf]
 
* [http://www.math.ucr.edu/home/baez/classical/ Classical Mechanics]<br>
 
 
** John Baez
 
** John Baez
  
 
+
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
 +
* http://mathoverflow.net/questions/30886/applications-of-classical-field-theory
  
* http://mathoverflow.net/search?q=
+
* http://mathoverflow.net/search?q=
 
* http://goo.gl/rUJBV
 
  
 
+
  
 
+
  
 
+
==history==
 
 
<h5>history</h5>
 
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
<h5>related items</h5>
+
==related items==
  
* [[Electromagnetics|Electromagnetism]]
+
* [[Electromagnetics]]
* [[Einstein field equation|Einstein field hequation]]
+
* [[Einstein field equation]]
* [[symplectic geometry|sympletic geometry]]
+
* [[symplectic geometry]]
* [[5 integrable systems and solvable models|integrable Hamiltonian systems and solvable models]]
+
* [[Integrable systems and solvable models]]
  
 
+
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxeWN6Q2pyaE1ZMjg/edit
 +
  
 
+
==encyclopedia==
 
 
<h5>encyclopedia</h5>
 
  
 
* http://en.wikipedia.org/wiki/Classical_field_theory
 
* http://en.wikipedia.org/wiki/Classical_field_theory
144번째 줄: 122번째 줄:
 
* http://en.wikipedia.org/wiki/current_density
 
* http://en.wikipedia.org/wiki/current_density
 
* [http://en.wikipedia.org/wiki/Noether%27s_theorem http://en.wikipedia.org/wiki/Noether's_theorem]
 
* [http://en.wikipedia.org/wiki/Noether%27s_theorem http://en.wikipedia.org/wiki/Noether's_theorem]
 
 
* [http://ko.wikipedia.org/wiki/%EC%9E%91%EC%9A%A9 http://ko.wikipedia.org /wiki/작용]
 
* [http://ko.wikipedia.org/wiki/%EC%9E%91%EC%9A%A9 http://ko.wikipedia.org /wiki/작용]
 
* http://en.wikipedia.org/wiki/Canonical_coordinates
 
* http://en.wikipedia.org/wiki/Canonical_coordinates
150번째 줄: 127번째 줄:
 
* http://en.wikipedia.org/wiki/Lagrangian
 
* http://en.wikipedia.org/wiki/Lagrangian
 
* http://en.wikipedia.org/wiki/poisson_bracket
 
* http://en.wikipedia.org/wiki/poisson_bracket
* [http://en.wikipedia.org/wiki/Action_%28physics%29 http://en.wikipedia.org/wiki/Action_(physics)]
+
* http://en.wikipedia.org/wiki/Action_(physics)
 +
 
 +
 
 +
==books==
 +
* Classical mechanics, V.I. Arnold
 +
* [[Emmy Noether’s Wonderful Theorem]]
 +
* [http://library.nu/docs/1U9OCRM7QY/Electrodynamics%20and%20Classical%20Theory%20of%20Fields%20and%20Particles Electrodynamics and Classical Theory of Fields and Particles]
 +
 
  
* http://en.wikipedia.org/wiki/
+
==expositions==
* http://en.wikipedia.org/wiki/
+
* McLachlan, Robert I., Klas Modin, and Olivier Verdier. “Symmetry Reduction for Central Force Problems.” arXiv:1512.04631 [math-Ph], December 14, 2015. http://arxiv.org/abs/1512.04631.
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
+
* Nolte, David D. ‘The Tangled Tale of Phase Space’. Physics Today, 2010. http://works.bepress.com/ddnolte/2.
 +
* De León, M., M. Salgado, and S. Vilariño. “Methods of Differential Geometry in Classical Field Theories: K-Symplectic and K-Cosymplectic Approaches.” arXiv:1409.5604 [math-Ph], September 19, 2014. http://arxiv.org/abs/1409.5604.
 +
* Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences
 +
* Caudrey, P. J., J. C. Eilbeck, and J. D. Gibbon. 1975. “The Sine-Gordon Equation as a Model Classical Field Theory.” Il Nuovo Cimento B Series 11 25 (2) (February 1): 497–512. doi:10.1007/BF02724733.
 +
* Müller, Dr Volkhard F. 1969. “Introduction to the Lagrangian Method.” In Current Algebra and Phenomenological Lagrange Functions, 42–52. Springer Tracts in Modern Physics 118 50. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0045916.
  
 
+
==articles==
 +
* Sebastián Ferraro, Manuel de León, Juan Carlos Marrero, David Martín de Diego, Miguel Vaquero, On the Geometry of the Hamilton-Jacobi Equation and Generating Functions, arXiv:1606.00847 [math-ph], June 02 2016, http://arxiv.org/abs/1606.00847
 +
* Solanpää, Janne, Perttu Luukko, and Esa Räsänen. ‘Bill2d - a Software Package for Classical Two-Dimensional Hamiltonian Systems’. arXiv:1506.06917 [physics], 23 June 2015. http://arxiv.org/abs/1506.06917.
 +
* Zelikin, Mikhail. “The Fractal Theory of the Saturn Ring.” arXiv:1506.02908 [math-Ph], June 9, 2015. http://arxiv.org/abs/1506.02908.
 +
* Gay-Balmaz, François, and Tudor S. Ratiu. 2014. “A New Lagrangian Dynamic Reduction in Field Theory.” arXiv:1407.0263 [math-Ph], July. http://arxiv.org/abs/1407.0263.
 +
* Sławianowski, J. J., Jr Schroeck, and A. Martens. “Why Must We Work in the Phase Space?” arXiv:1404.2588 [math-Ph], April 4, 2014. http://arxiv.org/abs/1404.2588.
  
 
 
  
<h5>books</h5>
 
  
*  Classical mechanics [[2610572/attachments/1142452|Classical_Mechanics.djvu]]V.I. Arnold<br>
+
[[분류:개인노트]]
* [http://library.nu/docs/1U9OCRM7QY/Electrodynamics%20and%20Classical%20Theory%20of%20Fields%20and%20Particles Electrodynamics and Classical Theory of Fields and Particles]<br>
+
[[분류:physics]]
 +
[[분류:math and physics]]
 +
[[분류:classical mechanics]]
 +
[[분류:migrate]]
  
* [[2010년 books and articles]]
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2603912 Q2603912]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'classical'}, {'LOWER': 'field'}, {'LEMMA': 'theory'}]

2021년 2월 17일 (수) 02:21 기준 최신판

introduction

  • can be formulated using classical fields and Lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
  • three important conserved quantity
    • energy
    • momentum
    • angular momentum



notation

  • dynamical variables \(q_{k}, \dot{q}_k\) for \(k=1,\cdots, N\)
  • \(T\) kinetic energy
  • \(V\) potential energy
  • We have Lagrangian \(L=T-V\)
  • Define the Hamiltonian
  • \(H =\sum_{k=1}^{N} p_{k}\dot{q}_{k}-L\)
  • \(p\dot q\) is twice of kinetic energy
  • Thus the Hamiltonian represents \(H=T+V\) the total energy of the system



Lagrangian formalism



canonically conjugate momentum

  • canonically conjugate momenta\(p_{k}=\frac{\partial L}{\partial \dot{q}_k}\)
  • instead of \(q_{k}, \dot{q}_k\), one can use \(q_{k}, p_{k}\) as dynamical variables




Hamiltonian mechanics




Poisson bracket

For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket

\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)

In quantization we have correspondence

\(\{f,g\} = \frac{1}{i}[u,v]\)



phase space

links and webpages


question and answers(Math Overflow)




history



related items


computational resource


encyclopedia


books


expositions

  • McLachlan, Robert I., Klas Modin, and Olivier Verdier. “Symmetry Reduction for Central Force Problems.” arXiv:1512.04631 [math-Ph], December 14, 2015. http://arxiv.org/abs/1512.04631.
  • Nolte, David D. ‘The Tangled Tale of Phase Space’. Physics Today, 2010. http://works.bepress.com/ddnolte/2.
  • De León, M., M. Salgado, and S. Vilariño. “Methods of Differential Geometry in Classical Field Theories: K-Symplectic and K-Cosymplectic Approaches.” arXiv:1409.5604 [math-Ph], September 19, 2014. http://arxiv.org/abs/1409.5604.
  • Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences
  • Caudrey, P. J., J. C. Eilbeck, and J. D. Gibbon. 1975. “The Sine-Gordon Equation as a Model Classical Field Theory.” Il Nuovo Cimento B Series 11 25 (2) (February 1): 497–512. doi:10.1007/BF02724733.
  • Müller, Dr Volkhard F. 1969. “Introduction to the Lagrangian Method.” In Current Algebra and Phenomenological Lagrange Functions, 42–52. Springer Tracts in Modern Physics 118 50. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0045916.

articles

  • Sebastián Ferraro, Manuel de León, Juan Carlos Marrero, David Martín de Diego, Miguel Vaquero, On the Geometry of the Hamilton-Jacobi Equation and Generating Functions, arXiv:1606.00847 [math-ph], June 02 2016, http://arxiv.org/abs/1606.00847
  • Solanpää, Janne, Perttu Luukko, and Esa Räsänen. ‘Bill2d - a Software Package for Classical Two-Dimensional Hamiltonian Systems’. arXiv:1506.06917 [physics], 23 June 2015. http://arxiv.org/abs/1506.06917.
  • Zelikin, Mikhail. “The Fractal Theory of the Saturn Ring.” arXiv:1506.02908 [math-Ph], June 9, 2015. http://arxiv.org/abs/1506.02908.
  • Gay-Balmaz, François, and Tudor S. Ratiu. 2014. “A New Lagrangian Dynamic Reduction in Field Theory.” arXiv:1407.0263 [math-Ph], July. http://arxiv.org/abs/1407.0263.
  • Sławianowski, J. J., Jr Schroeck, and A. Martens. “Why Must We Work in the Phase Space?” arXiv:1404.2588 [math-Ph], April 4, 2014. http://arxiv.org/abs/1404.2588.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'classical'}, {'LOWER': 'field'}, {'LEMMA': 'theory'}]