"Macdonald polynomials and algebraic geometry"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==expositions== * Haiman, [https://math.berkeley.edu/~mhaiman/ftp/nfact/msri.pdf MacDonald Polynomials and Geometry] * Garsia, Adriano, and Jeffrey B. Remmel. 2005. “Breakthroughs i...)
 
imported>Pythagoras0
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
5번째 줄: 5번째 줄:
  
 
==articles==
 
==articles==
 +
* Brendon Rhoades, Ordered set partition statistics and the Delta Conjecture, arXiv:1605.04007 [math.CO], May 12 2016, http://arxiv.org/abs/1605.04007
 +
* Gordon, I. G. “Macdonald Positivity via the Harish-Chandra D-Module.” Inventiones Mathematicae 187, no. 3 (June 8, 2011): 637–43. doi:10.1007/s00222-011-0339-2.
 
* Haglund, J., M. Haiman, N. Loehr, and Richard V. Kadison. “Combinatorial Theory of Macdonald Polynomials I: Proof of Haglund’s Formula.” Proceedings of the National Academy of Sciences of the United States of America 102, no. 8 (February 22, 2005): 2690–96.
 
* Haglund, J., M. Haiman, N. Loehr, and Richard V. Kadison. “Combinatorial Theory of Macdonald Polynomials I: Proof of Haglund’s Formula.” Proceedings of the National Academy of Sciences of the United States of America 102, no. 8 (February 22, 2005): 2690–96.
 
* Haglund, J., M. Haiman, and N. Loehr. “A Combinatorial Formula for Macdonald Polynomials.” Proceedings of the National Academy of Sciences 101, no. 46 (November 16, 2004): 16127–31. doi:10.1073/pnas.0405567101.
 
* Haglund, J., M. Haiman, and N. Loehr. “A Combinatorial Formula for Macdonald Polynomials.” Proceedings of the National Academy of Sciences 101, no. 46 (November 16, 2004): 16127–31. doi:10.1073/pnas.0405567101.
14번째 줄: 16번째 줄:
 
[[분류:math]]
 
[[분류:math]]
 
[[분류:symmetric polynomials]]
 
[[분류:symmetric polynomials]]
 +
[[분류:migrate]]

2020년 11월 14일 (토) 01:12 기준 최신판

expositions


articles

  • Brendon Rhoades, Ordered set partition statistics and the Delta Conjecture, arXiv:1605.04007 [math.CO], May 12 2016, http://arxiv.org/abs/1605.04007
  • Gordon, I. G. “Macdonald Positivity via the Harish-Chandra D-Module.” Inventiones Mathematicae 187, no. 3 (June 8, 2011): 637–43. doi:10.1007/s00222-011-0339-2.
  • Haglund, J., M. Haiman, N. Loehr, and Richard V. Kadison. “Combinatorial Theory of Macdonald Polynomials I: Proof of Haglund’s Formula.” Proceedings of the National Academy of Sciences of the United States of America 102, no. 8 (February 22, 2005): 2690–96.
  • Haglund, J., M. Haiman, and N. Loehr. “A Combinatorial Formula for Macdonald Polynomials.” Proceedings of the National Academy of Sciences 101, no. 46 (November 16, 2004): 16127–31. doi:10.1073/pnas.0405567101.
  • Haglund, J. “A Combinatorial Model for the Macdonald Polynomials.” Proceedings of the National Academy of Sciences of the United States of America 101, no. 46 (2004): 16127–31. doi:10.1073/pnas.0405567101.