Macdonald polynomials and algebraic geometry
둘러보기로 가기
검색하러 가기
expositions
- Haiman, MacDonald Polynomials and Geometry
- Garsia, Adriano, and Jeffrey B. Remmel. 2005. “Breakthroughs in the Theory of Macdonald Polynomials.” Proceedings of the National Academy of Sciences of the United States of America 102 (11): 3891–3894. doi:10.1073/pnas.0409705102. http://www.pnas.org/content/102/11/3891.full
articles
- Brendon Rhoades, Ordered set partition statistics and the Delta Conjecture, arXiv:1605.04007 [math.CO], May 12 2016, http://arxiv.org/abs/1605.04007
- Gordon, I. G. “Macdonald Positivity via the Harish-Chandra D-Module.” Inventiones Mathematicae 187, no. 3 (June 8, 2011): 637–43. doi:10.1007/s00222-011-0339-2.
- Haglund, J., M. Haiman, N. Loehr, and Richard V. Kadison. “Combinatorial Theory of Macdonald Polynomials I: Proof of Haglund’s Formula.” Proceedings of the National Academy of Sciences of the United States of America 102, no. 8 (February 22, 2005): 2690–96.
- Haglund, J., M. Haiman, and N. Loehr. “A Combinatorial Formula for Macdonald Polynomials.” Proceedings of the National Academy of Sciences 101, no. 46 (November 16, 2004): 16127–31. doi:10.1073/pnas.0405567101.
- Haglund, J. “A Combinatorial Model for the Macdonald Polynomials.” Proceedings of the National Academy of Sciences of the United States of America 101, no. 46 (2004): 16127–31. doi:10.1073/pnas.0405567101.