"Compact Kähler manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
2번째 줄: 2번째 줄:
 
* {{수학노트|url=Metrics_on_Riemann_surfaces}}
 
* {{수학노트|url=Metrics_on_Riemann_surfaces}}
 
* Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
 
* Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
* A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
+
* A Hermitian metric <math>h</math> on a complex manifold <math>(M^{2m},J)</math> : <math>h(X,Y)=h(JX,JY)</math>
* fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
+
* fundamental 2-form (or Kähler form) <math>(1,1)</math>-form given by <math>\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}</math>
* If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
+
* If <math>\Omega</math> is closed, i.e., <math>d\Omega=0</math>, we call <math>h</math> a Kahler metric
* there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential
+
* there exists a real function <math>K</math> such that <math>\Omega=i\partial \overline{\partial} K</math>, which we call the Kahler potential
 
* The Ricci form is one of the most important objects on a Kahler manifold
 
* The Ricci form is one of the most important objects on a Kahler manifold
  
 
==Hermitian metric on a complex manifold==
 
==Hermitian metric on a complex manifold==
* Let $h$ be a Hermitian metric and the coefficient
+
* Let <math>h</math> be a Hermitian metric and the coefficient
$$
+
:<math>
 
h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}})
 
h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}})
$$
+
</math>
  
  
 
==examples==
 
==examples==
 
====flat matric====
 
====flat matric====
* $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$
+
* <math>h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}</math>
* $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$
+
* <math>\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}</math>
* potential $u(z)=\frac{1}{2}|z|^2$
+
* potential <math>u(z)=\frac{1}{2}|z|^2</math>
  
 
====dimension 1 case====
 
====dimension 1 case====
* $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
+
* <math>h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h</math>
* $\Omega=-2ih\,dz \wedge d\overline{z}$
+
* <math>\Omega=-2ih\,dz \wedge d\overline{z}</math>
* for $\mathbb{P}^{1}$,  
+
* for <math>\mathbb{P}^{1}</math>,  
$$
+
:<math>
 
\Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2}
 
\Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2}
$$
+
</math>
 
see [[Chern class]]
 
see [[Chern class]]
  
41번째 줄: 41번째 줄:
 
* compact Kähler manifold of dimension n
 
* compact Kähler manifold of dimension n
 
* Dolbeault cohomology
 
* Dolbeault cohomology
* $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
+
* <math>h^{p,q}=\operatorname{dim} H^{p,q}(X)</math>
* $h^{p,q}=h^{q,p}$
+
* <math>h^{p,q}=h^{q,p}</math>
* Serre duality $h^{p,q}=h^{n-p,n-q}$
+
* Serre duality <math>h^{p,q}=h^{n-p,n-q}</math>
  
  
 
===Hodge decomposition theorem===
 
===Hodge decomposition theorem===
* Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition  
+
* Let <math>M</math> be a compact Kähler manifold. Let <math>H^{p,q}(M)</math> be the space of cohomology classes represented by a closed form of type <math>(p,q)</math>. There is a direct sum decomposition  
$$
+
:<math>
 
H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M)
 
H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M)
$$
+
</math>
Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.
+
Moreover, <math>H^{p,q}(M)=\overline{H^{q,p}(M)}</math>. In other words, <math>H^{m}_{dR}(M)</math> carries a real Hodge structure of weight <math>m</math>.
  
  
57번째 줄: 57번째 줄:
 
* cohomology of sheaves of holomorphic forms
 
* cohomology of sheaves of holomorphic forms
 
;theorem
 
;theorem
Let $\Omega$ be the space of holomorphic $p$-forms on $M$
+
Let <math>\Omega</math> be the space of holomorphic <math>p</math>-forms on <math>M</math>
$$
+
:<math>
 
H^{p,q}(M)\cong H^q(M,\Omega^p)
 
H^{p,q}(M)\cong H^q(M,\Omega^p)
$$
+
</math>
  
  
80번째 줄: 80번째 줄:
 
* Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.
 
* Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1353916 Q1353916]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'kähler'}, {'LEMMA': 'manifold'}]

2021년 2월 17일 (수) 01:31 기준 최신판

introduction

  • 틀:수학노트
  • Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
  • A Hermitian metric \(h\) on a complex manifold \((M^{2m},J)\) \[h(X,Y)=h(JX,JY)\]
  • fundamental 2-form (or Kähler form) \((1,1)\)-form given by \(\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}\)
  • If \(\Omega\) is closed, i.e., \(d\Omega=0\), we call \(h\) a Kahler metric
  • there exists a real function \(K\) such that \(\Omega=i\partial \overline{\partial} K\), which we call the Kahler potential
  • The Ricci form is one of the most important objects on a Kahler manifold

Hermitian metric on a complex manifold

  • Let \(h\) be a Hermitian metric and the coefficient

\[ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) \]


examples

flat matric

  • \(h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}\)
  • \(\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}\)
  • potential \(u(z)=\frac{1}{2}|z|^2\)

dimension 1 case

  • \(h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h\)
  • \(\Omega=-2ih\,dz \wedge d\overline{z}\)
  • for \(\mathbb{P}^{1}\),

\[ \Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} \] see Chern class

etc


cohomology theory

  • Hodge theory of harmonic forms
  • compact Kähler manifold of dimension n
  • Dolbeault cohomology
  • \(h^{p,q}=\operatorname{dim} H^{p,q}(X)\)
  • \(h^{p,q}=h^{q,p}\)
  • Serre duality \(h^{p,q}=h^{n-p,n-q}\)


Hodge decomposition theorem

  • Let \(M\) be a compact Kähler manifold. Let \(H^{p,q}(M)\) be the space of cohomology classes represented by a closed form of type \((p,q)\). There is a direct sum decomposition

\[ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) \] Moreover, \(H^{p,q}(M)=\overline{H^{q,p}(M)}\). In other words, \(H^{m}_{dR}(M)\) carries a real Hodge structure of weight \(m\).


Delbeault

  • cohomology of sheaves of holomorphic forms
theorem

Let \(\Omega\) be the space of holomorphic \(p\)-forms on \(M\) \[ H^{p,q}(M)\cong H^q(M,\Omega^p) \]


computational resource


expositions

articles

  • Berczi, Gergely. “Towards the Green-Griffiths-Lang Conjecture via Equivariant Localisation.” arXiv:1509.03406 [math], September 11, 2015. http://arxiv.org/abs/1509.03406.
  • Treger, Robert. ‘On Uniformization of Compact Kahler Manifolds’. arXiv:1507.01379 [math], 6 July 2015. http://arxiv.org/abs/1507.01379.
  • Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'kähler'}, {'LEMMA': 'manifold'}]