Compact Kähler manifolds
둘러보기로 가기
검색하러 가기
introduction
- 틀:수학노트
- Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
- A Hermitian metric \(h\) on a complex manifold \((M^{2m},J)\) \[h(X,Y)=h(JX,JY)\]
- fundamental 2-form (or Kähler form) \((1,1)\)-form given by \(\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}\)
- If \(\Omega\) is closed, i.e., \(d\Omega=0\), we call \(h\) a Kahler metric
- there exists a real function \(K\) such that \(\Omega=i\partial \overline{\partial} K\), which we call the Kahler potential
- The Ricci form is one of the most important objects on a Kahler manifold
Hermitian metric on a complex manifold
- Let \(h\) be a Hermitian metric and the coefficient
\[ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) \]
examples
flat matric
- \(h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}\)
- \(\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}\)
- potential \(u(z)=\frac{1}{2}|z|^2\)
dimension 1 case
- \(h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h\)
- \(\Omega=-2ih\,dz \wedge d\overline{z}\)
- for \(\mathbb{P}^{1}\),
\[ \Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} \] see Chern class
etc
cohomology theory
- Hodge theory of harmonic forms
- compact Kähler manifold of dimension n
- Dolbeault cohomology
- \(h^{p,q}=\operatorname{dim} H^{p,q}(X)\)
- \(h^{p,q}=h^{q,p}\)
- Serre duality \(h^{p,q}=h^{n-p,n-q}\)
Hodge decomposition theorem
- Let \(M\) be a compact Kähler manifold. Let \(H^{p,q}(M)\) be the space of cohomology classes represented by a closed form of type \((p,q)\). There is a direct sum decomposition
\[ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) \] Moreover, \(H^{p,q}(M)=\overline{H^{q,p}(M)}\). In other words, \(H^{m}_{dR}(M)\) carries a real Hodge structure of weight \(m\).
Delbeault
- cohomology of sheaves of holomorphic forms
- theorem
Let \(\Omega\) be the space of holomorphic \(p\)-forms on \(M\) \[ H^{p,q}(M)\cong H^q(M,\Omega^p) \]
computational resource
expositions
- Valentino Tosatti, KAWA lecture notes on the Kähler-Ricci flow, arXiv:1508.04823 [math.DG], August 19 2015, http://arxiv.org/abs/1508.04823
- Tosatti, Valentino. “Uniqueness of CP^n.” arXiv:1508.05641 [math], August 23, 2015. http://arxiv.org/abs/1508.05641.
- Weinkove, Ben. ‘The K"ahler-Ricci Flow on Compact K"ahler Manifolds’. arXiv:1502.06855 [math], 24 February 2015. http://arxiv.org/abs/1502.06855.
- Stefan Vandoren Lectures on Riemannian Geometry, Part II:Complex Manifolds
- Complex manifolds, Kahler metrics, differential and harmonic forms
- Werner Ballmann Lectures on Kahler Manifolds
articles
- Berczi, Gergely. “Towards the Green-Griffiths-Lang Conjecture via Equivariant Localisation.” arXiv:1509.03406 [math], September 11, 2015. http://arxiv.org/abs/1509.03406.
- Treger, Robert. ‘On Uniformization of Compact Kahler Manifolds’. arXiv:1507.01379 [math], 6 July 2015. http://arxiv.org/abs/1507.01379.
- Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.
메타데이터
위키데이터
- ID : Q1353916
Spacy 패턴 목록
- [{'LOWER': 'kähler'}, {'LEMMA': 'manifold'}]