"리만 가설"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 40개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5>
+
==개요==
  
*  리만제타함수 자명하지 않은 해는 그 실수부가 <math>1/2</math> 이라는 추측<br>
+
*  리만제타함수의 함수방정식은 다음과 같음:<math>\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)</math>
*  리만제타함수의 함수방정식은 다음과 같음<br><math>\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)</math><br>
+
*  자명한 해는 <math>s=-2,-4,-6\cdots</math>
 +
*  리만제타함수의 자명하지 않은 해(비자명해)는 그 실수부가 <math>1/2</math> 이라는 추측
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
==소수정리==
  
 
+
*  리만 제타 함수와 소수 계량 함수의 관계
  
 
+
*  "모든 실수 t에 대하여 <math>\zeta(1+it)\neq 0 </math> 이다" 는 소수정리와 동치명제이다
 +
* [[소수정리]]
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
  
* [[수학사연표 (역사)|수학사연표]]
+
  
 
+
==비자명해의 수론적 특성==
  
 
+
*  추측
 +
**  The positive imaginary parts of nontrivial zeros of <math>\zeta(s)</math> are linearly independent over <math>\mathbb{Q}</math>
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5>
+
  
<br>
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
==일반화된 리만가설==
  
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [[디리클레 L-함수]]
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
  
* [http://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C%EA%B0%80%EC%84%A4 http://ko.wikipedia.org/wiki/리만가설]
+
* http://en.wikipedia.org/wiki/Riemann_hypothesis
+
 
* http://www.wolframalpha.com/input/?i=Riemann+zeta
+
==응용==
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
+
 
 +
*  Rubinstein-Sarnak 1994
 +
** how often <math>\pi(x)>\operatorname{Li}(x)</math>
 +
*  even(x) : number of natural numbers , even number of prime factors
 +
*  Odd(x) : odd number of prime factors
 +
* [[골드바흐 추측]]
 +
*  1923 하디-리틀우드
 +
*  1937비노그라도프
 +
*  1997 Deshouillers-Effinger-te Riele-Zinoviev
 +
* [[순환소수에 대한 아틴의 추측]]
 +
:<math>C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.</math>
 +
* 1967 Hooley
 +
* 1973 Weinberger
 +
* [[이차 수체 유클리드 도메인의 분류]]
 +
 
 +
 +
 
 +
 +
 
 +
==Spectal theory and RH==
 +
 
 +
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.dmj/1077311789&page=record The Selberg trace formula and the Riemann zeta function]
 +
* Dennis A. Hejhal
 +
 
 +
 +
 
 +
 +
 
 +
==Hilbert-Polya and random matrices==
 +
 
 +
* http://en.wikipedia.org/wiki/Hilbert-P%C3%B3lya_conjecture
 +
* http://en.wikipedia.org/wiki/Gaussian_Unitary_Ensemble
 +
* Forrester, Peter J., and Anthony Mays. “Finite Size Corrections in Random Matrix Theory and Odlyzko’s Data Set for the Riemann Zeros.” arXiv:1506.06531 [math-Ph], June 22, 2015. http://arxiv.org/abs/1506.06531.
 +
* Barrett, Owen, Frank W. K. Firk, Steven J. Miller, and Caroline Turnage-Butterbaugh. ‘From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond’. arXiv:1505.07481 [math], 27 May 2015. http://arxiv.org/abs/1505.07481.
 +
* Fyodorov, Yan V. “Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond.” arXiv:math-ph/0412017, December 7, 2004. http://arxiv.org/abs/math-ph/0412017.
 +
* J.P. Keating (1993), Quantum chaology and the Riemann zeta-function, in Quantum Chaos, eds. G. Casati, I. Guarneri & U. Smilansky, (North-Holland, Amsterdam), 145-185 http://www.maths.bris.ac.uk/~majpk/papers/13.pdf
 +
* Berry, M. V. “The Bakerian Lecture, 1987: Quantum Chaology.” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 413, no. 1844 (September 8, 1987): 183–98. doi:10.1098/rspa.1987.0109.
 +
* Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function", Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193,
 +
* Paul Bourgade, Marc Yor. [http://hal.archives-ouvertes.fr/hal-00119410/en/ Random Matrices and the Riemann zeta function], 2006
 +
* http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/random.htm
 +
* http://www.maths.bris.ac.uk/~majpk/publications.html
 +
 
 +
==Noncommutatative geometry==
 +
 
 +
* Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
 +
* [http://gigapedia.com/items:description?id=90484 Noncommutative Geometry and Number Theory]: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)
 +
 
 +
  
 
+
==Computation of non-trivial zeros==
 +
* R. P. Brent, “On the zeros of the Riemann zeta function in the critical strip”, Mathematics of Computation 33 (1979), 1361–1372.
 +
* http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
 +
* The Riemann-Siegel Expansion for the Zeta Function: High Orders and Remainders, M. V. Berry
 +
* http://www.dtc.umn.edu/~odlyzko/doc/arch/fast.zeta.eval.pdf
 +
* [http://www.mathematik.hu-berlin.de/%7Egaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf]
 +
* http://wwwmaths.anu.edu.au/~brent/pd/rpb047.pdf
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
==메모==
 +
* Feng, Nianrong, Yongzheng Wang, and Ruixin Wu. “To Reveal the Truth of the Zeta Function in Riemann’s Manuscript.” arXiv:1508.02932 [math], August 6, 2015. http://arxiv.org/abs/1508.02932.
 +
* 영화속 오류 russell crowe riemann zeta
 +
* http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
  
*  Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse<br>
+
==역사==
** Bernhard Riemann, 1859
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
  
 
+
* [[수학사 연표]]
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
  
*  도서내검색<br>
+
==관련된 항목들==
** http://books.google.com/books?q=
+
* [[소수정리]]
** http://book.daum.net/search/contentSearch.do?query=
+
* [[리만제타함수의 영점]]
* 도서검색<br>
+
* [[클레이 연구소 밀레니엄 문제들]]
** http://books.google.com/books?q=
+
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
 +
==사전 형태의 자료==
  
 
+
* http://ko.wikipedia.org/wiki/리만가설
 +
* http://en.wikipedia.org/wiki/Riemann_hypothesis
 +
* http://en.wikipedia.org/wiki/Riemann-Siegel_formula
 +
* http://en.wikipedia.org/wiki/Riemann–Siegel_theta_function
 +
* http://www.wolframalpha.com/input/?i=Riemann+zeta
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 
  
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* Alain, Connes. “An Essay on the Riemann Hypothesis.” arXiv:1509.05576 [math], September 18, 2015. http://arxiv.org/abs/1509.05576.
 +
* Wolf, Marek. “Will a Physicists Prove the Riemann Hypothesis?” arXiv:1410.1214 [math-Ph], October 5, 2014. http://arxiv.org/abs/1410.1214.
 +
* França, Guilherme, and André LeClair. 2014. “A Theory for the Zeros of Riemann Zeta and Other L-Functions.” arXiv:1407.4358 [hep-Th, Physics:math-Ph], July. http://arxiv.org/abs/1407.4358.
 +
* http://logic.pdmi.ras.ru/~yumat/talks/turku_rh_2014/index.php
 +
* Conrey, J. Brian. "The Riemann hypothesis." Notices of the AMS 50, no. 3 (2003): 341-353. http://www.ams.org/notices/200303/fea-conrey-web.pdf
 +
* Bombieri, E. "Problems of the millennium: The Riemann hypothesis." Clay mathematical Institute (2000).
  
 
+
==관련논문==
 +
* Brian Conrey, Jonathan P. Keating, Moments of zeta and correlations of divisor-sums: IV, http://arxiv.org/abs/1603.06893v1
 +
* [http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/ Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse] Bernhard Riemann, November 1859
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
[[분류:리만 제타 함수]]
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
==메타데이터==
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2993323 Q2993323]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'hilbert'}, {'OP': '*'}, {'LOWER': 'pólya'}, {'LEMMA': 'conjecture'}]

2021년 2월 17일 (수) 04:41 기준 최신판

개요

  • 리만제타함수의 함수방정식은 다음과 같음\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]
  • 자명한 해는 \(s=-2,-4,-6\cdots\)
  • 리만제타함수의 자명하지 않은 해(비자명해)는 그 실수부가 \(1/2\) 이라는 추측



소수정리

  • 리만 제타 함수와 소수 계량 함수의 관계
  • "모든 실수 t에 대하여 \(\zeta(1+it)\neq 0 \) 이다" 는 소수정리와 동치명제이다
  • 소수정리



비자명해의 수론적 특성

  • 추측
    • The positive imaginary parts of nontrivial zeros of \(\zeta(s)\) are linearly independent over \(\mathbb{Q}\)



일반화된 리만가설




응용

  • Rubinstein-Sarnak 1994
    • how often \(\pi(x)>\operatorname{Li}(x)\)
  • even(x) : number of natural numbers , even number of prime factors
  • Odd(x) : odd number of prime factors
  • 골드바흐 추측
  • 1923 하디-리틀우드
  • 1937비노그라도프
  • 1997 Deshouillers-Effinger-te Riele-Zinoviev
  • 순환소수에 대한 아틴의 추측

\[C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.\]



Spectal theory and RH



Hilbert-Polya and random matrices

Noncommutatative geometry

  • Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
  • Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)


Computation of non-trivial zeros


메모

역사



관련된 항목들


사전 형태의 자료


리뷰, 에세이, 강의노트

관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hilbert'}, {'OP': '*'}, {'LOWER': 'pólya'}, {'LEMMA': 'conjecture'}]