"미분형식과 맥스웰 방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
9번째 줄: | 9번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
− | * electromagnetic field strength<br><math>F_{\ | + | * electromagnetic field strength<br><math>F=\frac{1}{2}F_{\mu \nu}dx^{\mu}\wedge dxF=\left( \begin{array}{cccc} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & B_z & -B_y \\ \frac{E_y}{c} & -B_z & 0 & B_x \\ \frac{E_z}{c} & B_y & -B_x & 0 \end{array} \right){\nu}</math><br> |
* 다음과 같은 미분형식으로 이해할 수 있음<br><math>F=\frac{1}{2}F_{\alpha \beta}dx^{\alpha}\wedge dx^{\beta}</math><br><math>F=E_1 d x_1\wedge d t+B_3 d x_1\wedge d x_2+E_2 d x_2\wedge d t+B_1 d x_2\wedge d x_3+E_3 d x_3\wedge d t+B_2 d x_3\wedge d x_1</math><br> | * 다음과 같은 미분형식으로 이해할 수 있음<br><math>F=\frac{1}{2}F_{\alpha \beta}dx^{\alpha}\wedge dx^{\beta}</math><br><math>F=E_1 d x_1\wedge d t+B_3 d x_1\wedge d x_2+E_2 d x_2\wedge d t+B_1 d x_2\wedge d x_3+E_3 d x_3\wedge d t+B_2 d x_3\wedge d x_1</math><br> | ||
* 이차미분형식으로서 로렌츠 불변이다<br><math>F'=E'_1 d x'_1\wedge d t'+B'_3 d x'_1\wedge d x'_2+E'_2 d x'_2\wedge d t'+B'_1 d x'_2\wedge d x'_3+E'_3 d x'_3\wedge d t'+B'_2 d x'_3\wedge d x'_1=F</math><br> | * 이차미분형식으로서 로렌츠 불변이다<br><math>F'=E'_1 d x'_1\wedge d t'+B'_3 d x'_1\wedge d x'_2+E'_2 d x'_2\wedge d t'+B'_1 d x'_2\wedge d x'_3+E'_3 d x'_3\wedge d t'+B'_2 d x'_3\wedge d x'_1=F</math><br> | ||
17번째 줄: | 17번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">맥스웰 | + | <h5 style="margin: 0px; line-height: 2em;">맥스웰 방정식</h5> |
+ | |||
+ | * [[맥스웰 방정식]] 을 미분형식의 언어를 통하여 다음과 같이 쓸 수 있다<br><math>\mathrm{d}\, {\bold{F}}=0</math> (<math>\nabla \cdot \mathbf{B} = 0</math>, <math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>)<br><math>\mathrm{d}\, {*\bold{F}}=\bold{J}</math> (<math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math>, <math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>)<br> | ||
+ | |||
+ | |||
2012년 1월 19일 (목) 10:00 판
이 항목의 수학노트 원문주소
개요
- electromagnetic field strength
\(F=\frac{1}{2}F_{\mu \nu}dx^{\mu}\wedge dxF=\left( \begin{array}{cccc} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & B_z & -B_y \\ \frac{E_y}{c} & -B_z & 0 & B_x \\ \frac{E_z}{c} & B_y & -B_x & 0 \end{array} \right){\nu}\) - 다음과 같은 미분형식으로 이해할 수 있음
\(F=\frac{1}{2}F_{\alpha \beta}dx^{\alpha}\wedge dx^{\beta}\)
\(F=E_1 d x_1\wedge d t+B_3 d x_1\wedge d x_2+E_2 d x_2\wedge d t+B_1 d x_2\wedge d x_3+E_3 d x_3\wedge d t+B_2 d x_3\wedge d x_1\) - 이차미분형식으로서 로렌츠 불변이다
\(F'=E'_1 d x'_1\wedge d t'+B'_3 d x'_1\wedge d x'_2+E'_2 d x'_2\wedge d t'+B'_1 d x'_2\wedge d x'_3+E'_3 d x'_3\wedge d t'+B'_2 d x'_3\wedge d x'_1=F\)
맥스웰 방정식
- 맥스웰 방정식 을 미분형식의 언어를 통하여 다음과 같이 쓸 수 있다
\(\mathrm{d}\, {\bold{F}}=0\) (\(\nabla \cdot \mathbf{B} = 0\), \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\))
\(\mathrm{d}\, {*\bold{F}}=\bold{J}\) (\(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\), \(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \))
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문