"바이어슈트라스 치환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
22번째 줄: 22번째 줄:
 
 
 
 
  
<h5>쌍고</h5>
+
<h5>쌍곡함수의 바이어슈트라스 치환</h5>
 +
 
 +
* <math>R(\cosh x, \sinh x)</math>의 적분에 응용할 수 있다<br>
 +
 
 +
*  다음과 같은 치환적분을 사용<br><math>t=\tanh \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1-t^2}</math>, <math>\sinh x=\frac{2t}{1-t^2}</math>, <math>\cosh x=\frac{1+t^2}{1-t^2}</math><br><math>\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt</math><br>
 +
 
 +
 
 +
 
 +
 
  
 
 
 
 
119번째 줄: 127번째 줄:
  
 
* http://mathnow.wordpress.com/2009/11/13/the-weierstrass-substitution/
 
* http://mathnow.wordpress.com/2009/11/13/the-weierstrass-substitution/
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2012년 8월 16일 (목) 17:02 판

이 항목의 스프링노트 원문주소

 

 

개요
  • \(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
  • \(R(\cos x, \sin x)\)의 적분을 유리함수의 적분으로 바꾸기 위해 바이어슈트라스 치환을 사용한다
    \(t=\tan \frac{x}{2}\)

 

 

바이어슈트라스 치환
  • 다음과 같은 치환적분을 사용 (이를 바이어슈트라스 치환 이라 한다)
    \(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
    \(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)

 

 

쌍곡함수의 바이어슈트라스 치환
  • \(R(\cosh x, \sinh x)\)의 적분에 응용할 수 있다
  • 다음과 같은 치환적분을 사용
    \(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
    \(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)

 

 

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

블로그