"베버(Weber) 모듈라 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
50번째 줄: 50번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">special values</h5>
 
<h5 style="margin: 0px; line-height: 2em;">special values</h5>
  
 +
* <math>\mathfrak{f}(i)^8=4</math><br>
 +
* <math>\mathfrak{f}_1(i)^8=2</math><br>
 +
 +
* <math>\mathfrak{f}_1(i)^8=2</math><br>
 +
 +
* <math>\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau)=\sqrt2</math><br>
 
 
 
 
 
 
 
 
 
  
96번째 줄: 101번째 줄:
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]<br>
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]<br>
 
* [[자코비 세타함수]]<br>
 
* [[자코비 세타함수]]<br>
 +
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]<br>
  
 
 
 
 

2009년 12월 4일 (금) 21:35 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 베버의 class invariant 라는 이름으로 잘 알려져 있으며, 베버는 Schläfli 함수로 불렀음
  • class field theory에서 중요한 역할
  • 정의
    \(\mathfrak{f}(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)
    \(\mathfrak{f}_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)
    \(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)
    여기서  \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수

 

 

항등식
  • \(\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau)=\sqrt2\)
  • \(\mathfrak{f}(\tau)\mathfrak{f}_1(\tau)\mathfrak{f}_2(\tau)=\sqrt2\)
  • \(\mathfrak{f}(\tau)^8=\mathfrak{f}_1(\tau)^8+\mathfrak{f}_2(\tau)^8\)

 

 

모듈라 성질
  • \(\mathfrak{f}(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}_1(\tau)\)
  • \(\mathfrak{f}_1(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}(\tau)\)
  • \(\mathfrak{f}_2(\tau+1)=\zeta_{24}\mathfrak{f}_2(\tau)\)
  • \(\mathfrak{f}(-\frac{1}{\tau})=\mathfrak{f}(\tau)\)
  • \(\mathfrak{f}_1(-\frac{1}{\tau})=\mathfrak{f}_2(\tau)\)
  • \(\mathfrak{f}_2(-\frac{1}{\tau})=\mathfrak{f}_1(\tau)\)

 

 

j-invariant 와의 관계
  • \(\mathfrak{f}(\tau)^{24}\), \(-\mathfrak{f}_1(\tau)^{24}\), \(-\mathfrak{f}_2(\tau)^{24}\)는 \((x-16)^3-j(\tau)x=0\) 의 근이다

 

 

special values
  • \(\mathfrak{f}(i)^8=4\)
  • \(\mathfrak{f}_1(i)^8=2\)
  • \(\mathfrak{f}_1(i)^8=2\)
  • \(\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau)=\sqrt2\)

   

 

q-초기하급수와의 관계
  • q-초기하급수(q-hypergeometric series) 의 공식
    \(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
    \(z=q^{1/2}\) 인 경우
    \(\prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} (q^{1/2})^n=\sum_{n\geq 0}\frac{q^{n^2/2}}{(1-q)(1-q^2)\cdots(1-q^n)} \)
    \(\prod_{n=1}^{\infty} (1+q^{2n-1})=\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})} \)
    \(z=q\) 인 경우
    \(\prod_{n=1}^{\infty} (1+q^{n})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}q^n=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)
  • 위의 결과로부터 다음을 얻을 수 있다
    \(\mathfrak{f}(2\tau)=q^{-1/24}\prod_{n=1}^{\infty} (1+q^{2n-1})=q^{-1/24}\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}\)
    \(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그