"벡터의 외적(cross product)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
  
 
*  삼차원 유클리드 공간의 두 벡터 <math>\mathbf{a}, \mathbf{b}</math>에 정의된 이항연산<br>
 
*  삼차원 유클리드 공간의 두 벡터 <math>\mathbf{a}, \mathbf{b}</math>에 정의된 이항연산<br>
*  두 벡터에 수직이며, 크기가 <math>|\mathbf{a}| |\mathbf{b}|\sin\theta</math>인 벡터를 얻는다<br>
+
*  두 벡터에 수직이며, 크기가 <math>|\mathbf{a}| |\mathbf{b}|\sin\theta</math>인 벡터<br>
 
*  벡터의 크기는 두 벡터가 만드는 평행사변형의 넓이와 같게 됨<br>
 
*  벡터의 크기는 두 벡터가 만드는 평행사변형의 넓이와 같게 됨<br>
 +
 +
 
  
 
 
 
 
19번째 줄: 21번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">정의</h5>
 
<h5 style="margin: 0px; line-height: 2em;">정의</h5>
  
*  단위벡터 <math>\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)</math> 를 정의<br>
+
*  단위벡터 <math>\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)</math><br>
*  두 벡터 <math>\mathbf a = (a_1, a_2, a_3)</math>과 <math>\mathbf b = (b_1, b_2, b_3)</math><br><math>\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}</math><br>
+
*  두 벡터 <math>\mathbf a = (a_1, a_2, a_3)</math>과 <math>\mathbf b = (b_1, b_2, b_3)</math>에 대하여 다음과 같이 정의됨<br><math>\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}</math><br>
  
 
 
 
 
28번째 줄: 30번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">성질</h5>
 
<h5 style="margin: 0px; line-height: 2em;">성질</h5>
  
 
+
 <br>
 
+
*  라그랑지 항등식<br><math>|\mathbf{a}\times\mathbf{b}|^{2}+|\mathbf{a}\cdot \mathbf{b}|^{2}=|\mathbf{a}}|^{2}|\mathbf{b}|^{2}</math><br>
 
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">내적과의 관계</h5>
 
 
 
<math>|\mathbf{a}\times\mathbf{b}|^{2}+|\mathbf{a}\cdot \mathbf{b}|^{2}=|\mathbf{a}}|^{2}|\mathbf{b}|^{2}</math>
 
  
*  벡터 삼중곱 (라그랑지 공식)<br><math>\mathbf{a}\times (\mathbf{b}\times \mathbf{c}) = \mathbf{b}(\mathbf{a}\cdot\mathbf{c}) - \mathbf{c}(\mathbf{a}\cdot\mathbf{b})</math><br>
+
*  벡터 삼중곱 (라그랑지 공식)<br><math>\mathbf{a}\times (\mathbf{b}\times \mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}</math><br>
*  스칼라 삼중곱<br><math>\mathbf{a}\times (\mathbf{b}\times \mathbf{c}) = \mathbf{b}(\mathbf{a}\cdot\mathbf{c}) - \mathbf{c}(\mathbf{a}\cdot\mathbf{b})</math><br>
+
*  스칼라 삼중곱<br><math>\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix}  a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}</math><br>
  
 
 
 
 

2010년 9월 14일 (화) 19:51 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 삼차원 유클리드 공간의 두 벡터 \(\mathbf{a}, \mathbf{b}\)에 정의된 이항연산
  • 두 벡터에 수직이며, 크기가 \(|\mathbf{a}| |\mathbf{b}|\sin\theta\)인 벡터
  • 벡터의 크기는 두 벡터가 만드는 평행사변형의 넓이와 같게 됨

 

 

 

정의
  • 단위벡터 \(\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)\)
  • 두 벡터 \(\mathbf a = (a_1, a_2, a_3)\)과 \(\mathbf b = (b_1, b_2, b_3)\)에 대하여 다음과 같이 정의됨
    \(\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}\)

 

 

성질
  •  
  • 라그랑지 항등식
    \(|\mathbf{a}\times\mathbf{b}|^{2}+|\mathbf{a}\cdot \mathbf{b}|^{2}=|\mathbf{a}}|^{2}|\mathbf{b}|^{2}\)
  • 벡터 삼중곱 (라그랑지 공식)
    \(\mathbf{a}\times (\mathbf{b}\times \mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}\)
  • 스칼라 삼중곱
    \(\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}\)

 

 

재미있는 사실

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그