"벡터의 외적(cross product)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
30번째 줄: | 30번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">성질</h5> | <h5 style="margin: 0px; line-height: 2em;">성질</h5> | ||
− | * | + | * <math>\mathbf{a}\times\mathbf{b}=-(\mathbf{b}\times\mathbf{a})</math><br> |
* 라그랑지 항등식<br><math>|\mathbf{a}\times\mathbf{b}|^{2}+|\mathbf{a}\cdot \mathbf{b}|^{2}=|\mathbf{a}}|^{2}|\mathbf{b}|^{2}</math><br> | * 라그랑지 항등식<br><math>|\mathbf{a}\times\mathbf{b}|^{2}+|\mathbf{a}\cdot \mathbf{b}|^{2}=|\mathbf{a}}|^{2}|\mathbf{b}|^{2}</math><br> | ||
85번째 줄: | 85번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> | ||
− | + | * [http://www.jstor.org/stable/2315620 The Scarcity of Cross Products on Euclidean Spaces]<br> | |
+ | ** Bertram Walsh, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 74, No. 2 (Feb., 1967), pp. 188-194 | ||
+ | * [http://www.jstor.org/stable/2323537 Cross Products of Vectors in Higher Dimensional Euclidean Spaces]<br> | ||
+ | ** W. S. Massey, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 90, No. 10 (Dec., 1983), pp. 697-701 | ||
2010년 9월 16일 (목) 07:22 판
이 항목의 스프링노트 원문주소
개요
- 삼차원 유클리드 공간의 두 벡터 \(\mathbf{a}, \mathbf{b}\)에 정의된 이항연산
- 두 벡터에 수직이며, 크기가 \(|\mathbf{a}| |\mathbf{b}|\sin\theta\)인 벡터
- 벡터의 크기는 두 벡터가 만드는 평행사변형의 넓이와 같게 됨
정의
- 단위벡터 \(\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)\)
- 두 벡터 \(\mathbf a = (a_1, a_2, a_3)\)과 \(\mathbf b = (b_1, b_2, b_3)\)에 대하여 다음과 같이 정의됨
\(\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}\)
성질
- \(\mathbf{a}\times\mathbf{b}=-(\mathbf{b}\times\mathbf{a})\)
- 라그랑지 항등식
\(|\mathbf{a}\times\mathbf{b}|^{2}+|\mathbf{a}\cdot \mathbf{b}|^{2}=|\mathbf{a}}|^{2}|\mathbf{b}|^{2}\)
- 벡터 삼중곱 (라그랑지 공식)
\(\mathbf{a}\times (\mathbf{b}\times \mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}\) - 스칼라 삼중곱
\(\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}\)
재미있는 사실
역사
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/외적
- http://en.wikipedia.org/wiki/Cross_product
- [1]http://en.wikipedia.org/wiki/Triple_product/wiki/Cross_product
- http://www.wolframalpha.com/input/?i=
관련논문
- The Scarcity of Cross Products on Euclidean Spaces
- Bertram Walsh, The American Mathematical Monthly, Vol. 74, No. 2 (Feb., 1967), pp. 188-194
- Cross Products of Vectors in Higher Dimensional Euclidean Spaces
- W. S. Massey, The American Mathematical Monthly, Vol. 90, No. 10 (Dec., 1983), pp. 697-701
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)