"복소타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
[[복소타원곡선]]
 
[[복소타원곡선]]
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
+
==개요==
  
 
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]
 
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]
85번째 줄: 85번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=

2012년 11월 1일 (목) 13:27 판

이 항목의 스프링노트 원문주소

복소타원곡선

 

개요

 

y^2=4x^3-g_2x-g_3 

리만구면의 double cover

branched over 4 points

 

타원곡선의 분류 1

  • y^2=(x-x_1)(x-x_2)(x-x_3)(x-x_4)
  • 네 점은 0,1,\infty,\lambda
  • y^2=x(x-1)(x-\lambda)의 형태로 표현가능
  • 교차비(cross ratio)
    \(\lambda_2= \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}\) 인 경우,
    y^2=x(x-1)(x-\lambda)와 y^2=x(x-1)(x-\lambda_2)는 isomorphic
  • \lambda \mapsto \1-\lambda 와 \lambda\mapsto \frac{1}{\lambda}에 의해 불변인 \lambda의 유리함수
    256\frac{\lambda^2-\lambda+1}{\lambda^2(\lambda-1)^2}

 

 

 

타원곡선의 분류2

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

링크