"삼중 대각행렬 tridiagonal matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 삼중 대각행렬 tridiagonal matrix로 바꾸었습니다.)
6번째 줄: 6번째 줄:
  
 
<h5>개요</h5>
 
<h5>개요</h5>
 +
 +
<math>\left( \begin{array}{ccc}  a_1 & b_1 & 0 \\  c_1 & a_2 & b_2 \\  0 & c_2 & a_3 \end{array} \right)</math>
 +
 +
<math>\left( \begin{array}{cccc}  a_1 & b_1 & 0 & 0 \\  c_1 & a_2 & b_2 & 0 \\  0 & c_2 & a_3 & b_3 \\  0 & 0 & c_3 & a_4 \end{array} \right)</math>
 +
 +
<math>\left( \begin{array}{ccccc}  a_1 & b_1 & 0 & 0 & 0 \\  c_1 & a_2 & b_2 & 0 & 0 \\  0 & c_2 & a_3 & b_3 & 0 \\  0 & 0 & c_3 & a_4 & b_4 \\  0 & 0 & 0 & c_4 & a_5 \end{array} \right)</math>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">행렬식</h5>
 +
 +
*  continuant 라 불리며, 다음 점화식을 만족시킨다<br>
 +
*   <br>
  
 
 
 
 
50번째 줄: 67번째 줄:
 
* 발음사전 http://www.forvo.com/search/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=tridiagonal
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]

2011년 4월 25일 (월) 14:59 판

이 항목의 수학노트 원문주소

 

 

개요

\(\left( \begin{array}{ccc} a_1 & b_1 & 0 \\ c_1 & a_2 & b_2 \\ 0 & c_2 & a_3 \end{array} \right)\)

\(\left( \begin{array}{cccc} a_1 & b_1 & 0 & 0 \\ c_1 & a_2 & b_2 & 0 \\ 0 & c_2 & a_3 & b_3 \\ 0 & 0 & c_3 & a_4 \end{array} \right)\)

\(\left( \begin{array}{ccccc} a_1 & b_1 & 0 & 0 & 0 \\ c_1 & a_2 & b_2 & 0 & 0 \\ 0 & c_2 & a_3 & b_3 & 0 \\ 0 & 0 & c_3 & a_4 & b_4 \\ 0 & 0 & 0 & c_4 & a_5 \end{array} \right)\)

 

 

 

행렬식
  • continuant 라 불리며, 다음 점화식을 만족시킨다
  •  

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

링크