"삼중 대각행렬 tridiagonal matrix"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 삼중 대각행렬 tridiagonal matrix로 바꾸었습니다.) |
|||
6번째 줄: | 6번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
+ | |||
+ | <math>\left( \begin{array}{ccc} a_1 & b_1 & 0 \\ c_1 & a_2 & b_2 \\ 0 & c_2 & a_3 \end{array} \right)</math> | ||
+ | |||
+ | <math>\left( \begin{array}{cccc} a_1 & b_1 & 0 & 0 \\ c_1 & a_2 & b_2 & 0 \\ 0 & c_2 & a_3 & b_3 \\ 0 & 0 & c_3 & a_4 \end{array} \right)</math> | ||
+ | |||
+ | <math>\left( \begin{array}{ccccc} a_1 & b_1 & 0 & 0 & 0 \\ c_1 & a_2 & b_2 & 0 & 0 \\ 0 & c_2 & a_3 & b_3 & 0 \\ 0 & 0 & c_3 & a_4 & b_4 \\ 0 & 0 & 0 & c_4 & a_5 \end{array} \right)</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">행렬식</h5> | ||
+ | |||
+ | * continuant 라 불리며, 다음 점화식을 만족시킨다<br> | ||
+ | * <br> | ||
50번째 줄: | 67번째 줄: | ||
* 발음사전 http://www.forvo.com/search/ | * 발음사전 http://www.forvo.com/search/ | ||
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
− | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | + | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=tridiagonal |
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
2011년 4월 25일 (월) 14:59 판
이 항목의 수학노트 원문주소
개요
\(\left( \begin{array}{ccc} a_1 & b_1 & 0 \\ c_1 & a_2 & b_2 \\ 0 & c_2 & a_3 \end{array} \right)\)
\(\left( \begin{array}{cccc} a_1 & b_1 & 0 & 0 \\ c_1 & a_2 & b_2 & 0 \\ 0 & c_2 & a_3 & b_3 \\ 0 & 0 & c_3 & a_4 \end{array} \right)\)
\(\left( \begin{array}{ccccc} a_1 & b_1 & 0 & 0 & 0 \\ c_1 & a_2 & b_2 & 0 & 0 \\ 0 & c_2 & a_3 & b_3 & 0 \\ 0 & 0 & c_3 & a_4 & b_4 \\ 0 & 0 & 0 & c_4 & a_5 \end{array} \right)\)
행렬식
- continuant 라 불리며, 다음 점화식을 만족시킨다
-
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://en.wikipedia.org/wiki/Tridiagonal_matrix
- http://en.wikipedia.org/wiki/Continuant_(mathematics)
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
관련논문
관련도서