"역함수를 이용한 치환적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
33번째 줄: 33번째 줄:
 
 
 
 
  
<h5>재미있는 사실</h5>
+
==재미있는 사실</h5>
  
 
 
 
 
44번째 줄: 44번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
 
 
 
56번째 줄: 56번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
 
 
 
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
 
 
 
81번째 줄: 81번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
95번째 줄: 95번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
105번째 줄: 105번째 줄:
 
 
 
 
  
<h5>관련도서</h5>
+
==관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
119번째 줄: 119번째 줄:
 
 
 
 
  
<h5>관련기사</h5>
+
==관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
130번째 줄: 130번째 줄:
 
 
 
 
  
<h5>블로그</h5>
+
==블로그</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2012년 11월 1일 (목) 01:16 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 역함수를 이용한 치환적분법

 

\(\int f(x)\,dx=xf(x)-\int xf'(x)\,dx+xf(x)-\int f^{-1}(f(x))f'(x)\,dx+xf(x)-G(f(x))\)

여기서 \(G(x)= \int f^{-1}(x)\,dx\)

 

문제  

\(\int \sqrt{\frac{x}{1-x}}\,dx\)

\(G(x)=\int f^{-1}(x)\,dx= \int\frac{x^2}{1+x^2}\,dx=\int(1-\frac{1}{1+x^2})\,dx=x-\arctan x+C\)

따라서, 

\(\int \sqrt{\frac{x}{1-x}}\,dx= (x-1)\sqrt{\frac{x}{1-x}}+\arctan{\sqrt{\frac{x}{1-x}}}+C\)

 

 

==재미있는 사실

 

 

 

==역사

 

 

 

==메모

 

 

==관련된 항목들

 

 

수학용어번역

 

 

==사전 형태의 자료

 

 

==관련논문

 

 

==관련도서

 

 

==관련기사

 

 

==블로그