"오일러 베타적분(베타함수)"의 두 판 사이의 차이
71번째 줄: | 71번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">성질</h5> | <h5 style="margin: 0px; line-height: 2em;">성질</h5> | ||
− | * <math>x+y+z=1</math> 이면, | + | * <math>x+y+z=1</math> 이면, <math>\frac{x}{\sin \pi x}B(y,z)=\Gamma(x)\Gamma(y)\Gamma(z)</math><br> (증명)<br><math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math><br> |
− | |||
− | |||
104번째 줄: | 102번째 줄: | ||
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|lemniscate 곡선의 길이와 타원적분]]<br><math>4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots</math><br> | * [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|lemniscate 곡선의 길이와 타원적분]]<br><math>4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots</math><br> | ||
− | * [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br><math>6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots</math><br> (증명)<br><math>\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\Gamma(\frac{1}{2})\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})=\frac{1}{ | + | * [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br><math>6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots</math><br> (증명)<br><math>\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\Gamma(\frac{1}{2})\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})</math> ■<br> |
2010년 5월 14일 (금) 08:29 판
이 항목의 스프링노트 원문주소
개요
- 두 변수 x,y 에 대하여 다음과 같이 적분으로 정의되는 함수
\(B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt\) - Selberg 적분 으로 일반화된다
삼각함수의 적분과의 관계
\(B(x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta\)
\(\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\)
\(\int_0^{\frac{\pi}{2}}\cos^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\)
\(\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}= \frac{\sqrt{\pi}\Gamma(n+\frac{1}{2})}{2\Gamma(n+1)}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\)
(증명)
\(B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt\) 에서 \(t^2=\cos \theta\) 로 치환 ■
베타적분과 감마함수
- 감마함수를 이용하여, 다음과 같이 표현할 수 있다
\(B(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}\)
(증명)
가우시안 적분의 아이디어와 비슷하다.
\(\Gamma(x)\Gamma(y) = \int_0^\infty\ e^{-u} u^{x-1}\,du \int_0^\infty\ e^{-v} v^{y-1}\,dv\)
\(u = a^2\)와 \(v = b^2\) 로 치환하면,
\(\Gamma(x)\Gamma(y) = 4\int_0^\infty\ e^{-a^2} a^{2x-1}\,da \int_0^\infty\ e^{-b^2} b^{2y-1}\,db\)
\(= 4\int_{0}^\infty\ \int_{0}^\infty\ e^{-(a^2+b^2)} a^{2x-1} b^{2y-1} \,da \,db\)
\(=4\int_0^{\frac{\pi}{2}}\int_0^\infty\ e^{-r^2} (r\cos\theta)^{2x-1} (r\sin\theta)^{2y-1} r \, dr \,d\theta\)
\(= 4\int_0^\infty\ e^{-r^2} r^{2x+2y-2} r\, dr \int_0^{\frac{\pi}{2}}(\cos\theta)^{2x-1} (\sin\theta)^{2y-1}\, d\theta\)
\(= 2\int_0^\infty\ e^{-r^2} r^{2(x+y-1)} \, d(r^2) \int_0^{\pi/2}\ (\cos\theta)^{2x-1} (\sin\theta)^{2y-1} \,d\theta\)
\(= \Gamma(x+y)B(x,y)\) ■
성질
- \(x+y+z=1\) 이면, \(\frac{x}{\sin \pi x}B(y,z)=\Gamma(x)\Gamma(y)\Gamma(z)\)
(증명)
\(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)
무리함수의 적분과 감마함수
\(n>0\)에 대하여,
\(\int_0^1\frac{dx}{\sqrt{1-x^n}}=\frac{1}{n}B(\frac{1}{2},\frac{1}{n})\)
이 성립한다
(증명)
\(t=x^n\) 으로 치환하면, \(dt=nx^{n-1}\,dx=nt^{\frac{n-1}{n}}\,dx\).
\(\int_0^1\frac{dx}{\sqrt{1-x^n}}=\frac{1}{n}\int_0^1\frac{t^{-\frac{n-1}{n}}}{\sqrt{1-t}}dt=\frac{1}{n}\int_0^1{t^{\frac{1}{n}-1}}(1-t)^{\frac{1}{2}-1}dt=\frac{1}{n}B(\frac{1}{2},\frac{1}{n})\). ■
타원적분과의 관계
- lemniscate 곡선의 길이와 타원적분
\(4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\) - 제1종타원적분 K (complete elliptic integral of the first kind)
\(6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots\)
(증명)
\(\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\Gamma(\frac{1}{2})\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})\) ■
베타적분과 초월수
(정리)
\(a,b,a+b \in \mathbb{Q-Z}\) 라 하자. \(B(a,b)\) 는 초월수이다. 즉
\(B(a,b) = \frac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}= \int_0^1t^{a-1}(1-t)^{b-1}\,dt\)
는 초월수이다.
재미있는 사실
역사
관련된 항목들
- Selberg 적분
- lemniscate 곡선의 길이와 타원적분
- 감마함수
- 가우시안 적분
- 제1종타원적분 K (complete elliptic integral of the first kind)
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Beta_function
- http://en.wikipedia.org/wiki/Selberg_integral
- http://www.wolframalpha.com/input/?i=Beta+integral
- http://www.wolframalpha.com/input/?i=Beta(1/2,1/4)
- NIST Digital Library of Mathematical Functions
관련논문
- Beta Integrals
- S. Ole Warnaar
- Beta integrals and the associated orthogonal polynomials
- Richard Askey, 1989
- http://www.jstor.org/action/doBasicSearch?Query=
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)