"오일러-라그랑지 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/1933680">01 다양한 수학의 주제들</a>페이지로 이동하였습니다.)
(피타고라스님이 이 페이지의 위치를 <a href="/pages/6467107">변분법</a>페이지로 이동하였습니다.)
(차이 없음)

2010년 9월 27일 (월) 05:56 판

이 항목의 스프링노트 원문주소

 

 

개요

\(J = \int_a^b F(x,f(x),f'(x))\, dx\) 를 최대 또는 최소로 만들기 위한 조건

\(0 = \frac{\partial F}{\partial f} - \frac{d}{dx} \frac{\partial F}{\partial f'}\)

 

 

고전물리의 최소작용원칙

\(\mathcal{S} = \int L\, \mathrm{d}t\)

\({\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그