"원환면 (torus)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
20번째 줄: | 14번째 줄: | ||
* <math>X_u=\{\sin (u) (-(a+b \cos (v))),\cos (u) (a+b \cos (v)),0\}</math><br><math>X_v=\{-b \cos (u) \sin (v),-b \sin (u) \sin (v),b \cos (v)\}</math><br> | * <math>X_u=\{\sin (u) (-(a+b \cos (v))),\cos (u) (a+b \cos (v)),0\}</math><br><math>X_v=\{-b \cos (u) \sin (v),-b \sin (u) \sin (v),b \cos (v)\}</math><br> | ||
* <math>N=\{b \cos (u) \cos (v) (a+b \cos (v)),b \sin (u) \cos (v) (a+b \cos (v)),b \sin (v) (a+b \cos (v))\}</math> | * <math>N=\{b \cos (u) \cos (v) (a+b \cos (v)),b \sin (u) \cos (v) (a+b \cos (v)),b \sin (v) (a+b \cos (v))\}</math> | ||
− | * 왼쪽 그림의 붉은 색 작은 원을 y-축에 대하여 회전하여, 오른쪽 원환면을 얻는다<br> -> | + | * 왼쪽 그림의 붉은 색 작은 원을 y-축에 대하여 회전하여, 오른쪽 원환면을 얻는다<br> [[파일:원환면 (torus)1.gif]] -> [[파일:원환면 (torus)2.gif]] |
2012년 10월 20일 (토) 17:38 판
개요
매개화
- 매개화
- \(X(u,v)=\{\cos (u) (a+b \cos (v)),\sin (u) (a+b \cos (v)),b \sin (v)\}\)
\(0<u<2\pi\), \(0<v<2\pi\) - \(X_u=\{\sin (u) (-(a+b \cos (v))),\cos (u) (a+b \cos (v)),0\}\)
\(X_v=\{-b \cos (u) \sin (v),-b \sin (u) \sin (v),b \cos (v)\}\) - \(N=\{b \cos (u) \cos (v) (a+b \cos (v)),b \sin (u) \cos (v) (a+b \cos (v)),b \sin (v) (a+b \cos (v))\}\)
- 왼쪽 그림의 붉은 색 작은 원을 y-축에 대하여 회전하여, 오른쪽 원환면을 얻는다
->
제1기본형식
- \(E=(a+b \cos (v))^2\)
- \(F=0\)
- \(G=b^2\)
크리스토펠 기호
- 크리스토펠 기호 항목 참조
\(\Gamma^1_{11}=0\)
\(\Gamma^1_{12}=-\frac{b \sin (v)}{a+b \cos (v)}\)
\(\Gamma^1_{21}=-\frac{b \sin (v)}{a+b \cos (v)}\)
\(\Gamma^1_{22}=0\)
\(\Gamma^2_{11}=\frac{\sin (v) (a+b \cos (v))}{b}\)
\(\Gamma^2_{12}=0\)
\(\Gamma^2_{21}=0\)
\(\Gamma^2_{22}=0\)
측지선
- 측지선 이 만족시키는 미분방정식
\(\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\) - 풀어쓰면,
\(\frac{d^2 u}{dt^2} -\frac{2b \sin (v)}{a+b \cos (v)}\frac{du }{dt}\frac{dv }{dt} = 0\)
\(\frac{d^2 v}{dt^2} + \frac{\sin (v) (a+b \cos (v))}{b}\frac{du }{dt}\frac{du }{dt} = 0\)
가우스곡률
- 가우스곡률 항목 참조
\(K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)=\frac{\cos (v)}{a b+b^2 \cos (v)}\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxMDVmNGMxNzYtMjM5NC00ZWIwLWEwMzYtMGIwOWEwNTUwZDg0&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문